首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The probabilistic traveling salesman problem is a well known problem that is quite challenging to solve. It involves finding the tour with the lowest expected cost for customers that will require a visit with a given probability. There are several proposed algorithms for the homogeneous version of the problem, where all customers have identical probability of being realized. From the literature, the most successful approaches involve local search procedures, with the most famous being the 2-p-opt and 1-shift procedures proposed by Bertsimas [D.J. Bertsimas, L. Howell, Further results on the probabilistic traveling salesman problem, European Journal of Operational Research 65 (1) (1993) 68–95]. Recently, however, evidence has emerged that indicates the equations offered for these procedures are not correct, and even when corrected, the translation to the heterogeneous version of the problem is not simple. In this paper we extend the analysis and correction to the heterogeneous case. We derive new expressions for computing the cost of 2-p-opt and 1-shift local search moves, and we show that the neighborhood of a solution may be explored in O(n2) time, the same as for the homogeneous case, instead of O(n3) as first reported in the literature.  相似文献   

2.
We present a variable neighborhood search approach for solving the one-commodity pickup-and-delivery travelling salesman problem. It is characterized by a set of customers such that each of the customers either supplies (pickup customers) or demands (delivery customers) a given amount of a single product, and by a vehicle, whose given capacity must not be exceeded, that starts at the depot and must visit each customer only once. The objective is to minimize the total length of the tour. Thus, the considered problem includes checking the existence of a feasible travelling salesman’s tour and designing the optimal travelling salesman’s tour, which are both NP-hard problems. We adapt a collection of neighborhood structures, k-opt, double-bridge and insertion operators mainly used for solving the classical travelling salesman problem. A binary indexed tree data structure is used, which enables efficient feasibility checking and updating of solutions in these neighborhoods. Our extensive computational analysis shows that the proposed variable neighborhood search based heuristics outperforms the best-known algorithms in terms of both the solution quality and computational efforts. Moreover, we improve the best-known solutions of all benchmark instances from the literature (with 200 to 500 customers). We are also able to solve instances with up to 1000 customers.  相似文献   

3.
包含随机客户的选择性旅行商问题建模及求解   总被引:1,自引:0,他引:1       下载免费PDF全文
针对快递配送过程中客户需求具有不确定性的特征,提出一种新的路径优化问题——包含随机客户的选择性旅行商问题,在该问题中客户每天是否具有配送需求存在一定概率,并且对客户进行配送可获取一定利润。同时考虑以上两种因素,建立该问题的数学模型, 目标为在满足行驶距离限制的条件下,找出一条经过部分客户的预优化路径,使得该路径的期望利润最大。其可用于模拟构建最后一公里快递配送的路径问题,提供更具有经济效益的配送路径。随后提出包含精细化局部搜索策略的改进遗传算法,算法根据问题特点构建初始可行解。最后通过多个计算比对结果表明,该算法具有较高的计算效率。  相似文献   

4.
A travelling deliveryman needs to find a tour such that the total waiting time of all the customers he has to visit is minimum. The deliveryman starts his tour at a depot, travelling at constant velocity. In this paper we suggest a general variable neighborhood search based heuristic to solve this NP-hard combinatorial optimization problem. We combine several classical neighborhood structures and design data structure to store and update the incumbent solution efficiently. In this way, we are able to explore neighborhoods as efficiently as when solving the travelling salesman problem. Computational results obtained on usual test instances show that our approach outperforms recent heuristics from the literature.  相似文献   

5.
This paper focuses on introducing a concept of diversified local search strategy under the scatter search framework for the probabilistic traveling salesman problem (PTSP). Different combinations of three commonly used local search methods in the PTSP, i.e., 1-shift, 2-opt, and 3-opt, were used to investigate its effects. A set of numerical experiments were conducted to test the validity of the proposed strategy based on randomly generated test instances. The numerical results and the permutation test showed that the diversified local search strategy, especially by combining 1-shift and 2-opt algorithms, can most effectively solve the homogeneous and heterogeneous PTSP in most of the tested instances in comparison with the single local search strategy under scatter search framework.  相似文献   

6.
In this paper we investigate the relationship between traveling salesman tour lengths and submodular functions. This work is motivated by the one warehouse multi-retailer inventory/distribution problem with traveling salesman tour vehicle routing costs. Our goal is to find a submodular function whose values are close to those of optimal tour lengths through a central warehouse and a group of retailers. Our work shows that a submodular approximation to traveling salesman tour lengths whose error is bounded by a constant does not exist. However, we present heuristics that have errors which grow slowly with the number of retailers for the traveling salesman problem in the Euclidean plane. Furthermore, we perform computational tests that show that our submodular approximations of traveling salesman tour lengths have smaller errors than our theoretical worst case analysis would lead us to believe.  相似文献   

7.
In this paper, we describe new ways to apply Ant Colony Optimization (ACO) to the Probabilistic Traveling Salesperson Problem (PTSP). PTSP is a stochastic extension of the well known Traveling Salesperson Problem (TSP), where each customer will require a visit only with a certain probability. The goal is to find an a priori tour visiting all customers with minimum expected length, customers not requiring a visit simply being skipped in the tour.We show that ACO works well even when only an approximative evaluation function is used, which speeds up the algorithm, leaving more time for the actual construction. As we demonstrate, this idea can also be applied successfully to other state-of-the-art heuristics. Furthermore, we present new heuristic guidance schemes for ACO, better adapted to the PTSP than what has been used previously. We show that these modifications lead to significant improvements over the standard ACO algorithm, and that the resulting ACO is at least competitive to other state-of-the-art heuristics.  相似文献   

8.
Tabu search is a metastrategy for guiding known heuristics to overcome local optimality with a large number of successful applications reported in the literature. In this paper we investigate two dynamic strategies, the reverse elimination method and the cancellation sequence method. The incorporation of strategic oscillation as well as a combination of these methods are developed. The impact of the different methods is shown with respect to the traveling purchaser problem, a generalization of the classical traveling salesman problem. The traveling purchaser problem is the problem of determining a tour of a purchaser buying several items in different shops by minimizing the total amount of travel and purchase costs. A comparison of the tabu search strategies with a simulated annealing approach is presented, too.  相似文献   

9.
The Multi-source Weber Problem (MWP) is concerned with locating m facilities in the Euclidean plane, and allocating these facilities to n customers at minimum total cost. The deterministic version of the problem, which assumes that customer locations and demands are known with certainty, is a non-convex optimization problem and difficult to solve. In this work, we focus on a probabilistic extension and consider the situation where customer locations are randomly distributed according to a bivariate distribution. We first present a mathematical programming formulation for the probabilistic MWP called the PMWP. For its solution, we propose two heuristics based on variable neighbourhood search (VNS). Computational results obtained on a number of test instances show that the VNS heuristics improve the performance of a probabilistic alternate location-allocation heuristic referred to as PALA. In its original form, the applicability of the new heuristics depends on the existence of a closed-form expression for the expected distances between facilities and customers. Unfortunately, such an expression exists only for a few distance function and probability distribution combinations. We therefore use two approximation methods for the expected distances, which make the VNS heuristics applicable for any distance function and bivariate distribution of customer locations.  相似文献   

10.
The generalized traveling salesman problem is a variation of the well-known traveling salesman problem in which the set of nodes is divided into clusters; the objective is to find a minimum-cost tour passing through one node from each cluster. We present an effective heuristic for this problem. The method combines a genetic algorithm (GA) with a local tour improvement heuristic. Solutions are encoded using random keys, which circumvent the feasibility problems encountered when using traditional GA encodings. On a set of 41 standard test problems with symmetric distances and up to 442 nodes, the heuristic found solutions that were optimal in most cases and were within 1% of optimality in all but the largest problems, with computation times generally within 10 seconds. The heuristic is competitive with other heuristics published to date in both solution quality and computation time.  相似文献   

11.
We present a new symmetric traveling salesman problem tour construction heuristic. Two sequential matchings yield a set of cycles over the given point set; these are then stitched to form a tour. Our method outperforms all previous tour construction methods, but is dominated by several tour improvement heuristics.  相似文献   

12.
A simple transformation of the distance matrix for the Euclidean traveling salesman problem is presented that produces a tighter lower bound on the length of the optimal tour than has previously been attainable using the assignment relaxation. The improved lower bound is obtained by exploiting geometric properties of the problem to produce fewer and larger subtours on the first solution of the assignment problem. This research should improve the performance of assignment based exact procedures and may lead to improved heuristics for the traveling salesman problem.  相似文献   

13.
In this paper, we present two general variable neighborhood search (GVNS) based variants for solving the traveling salesman problem with draft limits (TSPDL), a recent extension of the traveling salesman problem. TSPDL arises in the context of maritime transportation. It consists of finding optimal Hamiltonian tour for a given ship which has to visit and deliver products to a set of ports while respecting the draft limit constraints. The proposed methods combine ideas in sequential variable neighborhood descent within GVNS. They are tested on a set of benchmarks from the literature as well as on a new one generated by us. Computational experiments show remarkable efficiency and effectiveness of our new approach. Moreover, new set of benchmarks instances is generated.  相似文献   

14.
The Probabilistic Traveling Salesman Problem is a variation of the classic traveling salesman problem and one of the most significant stochastic routing problems. In probabilistic traveling salesman problem only a subset of potential customers need to be visited on any given instance of the problem. The number of customers to be visited each time is a random variable. In this paper, a variant of the well-known Greedy Randomized Adaptive Search Procedure (GRASP), the Expanding Neighborhood Search–GRASP, is proposed for the solution of the probabilistic traveling salesman problem. expanding neighborhood search–GRASP has been proved to be a very efficient algorithm for the solution of the traveling salesman problem. The proposed algorithm is tested on a numerous benchmark problems from TSPLIB with very satisfactory results. Comparisons with the classic GRASP algorithm and with a Tabu Search algorithm are also presented. Also, a comparison is performed with the results of a number of implementations of the Ant Colony Optimization algorithm from the literature and in six out of ten cases the proposed algorithm gives a new best solution.  相似文献   

15.
The Team Orienteering Problem (TOP) is the generalization to the case of multiple tours of the Orienteering Problem, known also as Selective Traveling Salesman Problem. A set of potential customers is available and a profit is collected from the visit to each customer. A fleet of vehicles is available to visit the customers, within a given time limit. The profit of a customer can be collected by one vehicle at most. The objective is to identify the customers which maximize the total collected profit while satisfying the given time limit for each vehicle. We propose two variants of a generalized tabu search algorithm and a variable neighborhood search algorithm for the solution of the TOP and show that each of these algorithms beats the already known heuristics. Computational experiments are made on standard instances.  相似文献   

16.
This paper concerns a generalization of the traveling salesman problem (TSP) called multi-commodity one-to-one pickup-and-delivery traveling salesman problem (m-PDTSP) in which cities correspond to customers providing or requiring known amounts of m different commodities, and the vehicle has a given upper-limit capacity. Each commodity has exactly one origin and one destination, and the vehicle must visit each customer exactly once. The problem can also be defined as the capacitated version of the classical TSP with precedence constraints. This paper presents two mixed integer linear programming models, and describes a decomposition technique for each model to find the optimal solution. Computational experiments on instances from the literature and randomly generated compare the techniques and show the effectiveness of our implementation.  相似文献   

17.
We introduce a novel variant of the travelling salesmen problem and propose a hyper-heuristic methodology in order to solve it. In a competitive travelling salesmen problem (CTSP), m travelling salesmen are to visit n cities and the relationship between the travelling salesmen is non-cooperative. The salesmen will receive a payoff if they are the first one to visit a city and they pay a cost for any distance travelled. The objective of each salesman is to visit as many unvisited cities as possible, with a minimum travelling distance. Due to the competitive element, each salesman needs to consider the tours of other salesman when planning their own tour. Since equilibrium analysis is difficult in the CTSP, a hyper-heuristic methodology is developed. The model assumes that each agent adopts a heuristic (or set of heuristics) to choose their moves (or tour) and each agent knows that the moves/tours of all agents are not necessarily optimal. The hyper-heuristic consists of a number of low-level heuristics, each of which can be used to create a move/tour given the heuristics of the other agents, together with a high-level heuristic that is used to select from the low-level heuristics at each decision point. Several computational examples are given to illustrate the effectiveness of the proposed approach.  相似文献   

18.
Summary In this paper the Vehicle Routing-Allocation Problem (VRAP) is presented. In VRAP not all customers need be visited by the vehicles. However customers not visited either have to be allocated to some customer on one of the vehicle tours or left isolated. We concentrate our discussion on the Single Vehicle Routing-Allocation Problem (SVRAP). An integer linear programming formulation of SVRAP is presented and we show how SVRAP provides a unifying framework for understanding a number of the papers and problems presented in the literature. Specifically the covering tour problem, the covering salesman problem, the median tour problem, the maximal covering tour problem, the travelling salesman problem, the generalised travelling salesman problem, the selective travelling salesman problem, the prize collecting travelling salesman problem, the maximum covering/shortest path problem, the maximum population/shortest path problem, the shortest covering path problem, the median shortest path problem, the minimum covering/shortest path problem and the hierarchical network design problem are special cases/variants of SVRAP.  相似文献   

19.
Starting from her home, a service provider visits several customers, following a predetermined route, and returns home after all customers are visited. The problem is to find a fair allocation of the total cost of this tour among the customers served. A transferable-utility cooperative game can be associated with this cost allocation problem. We introduce a new class of games, which we refer as the fixed-route traveling salesman games with appointments. We characterize the Shapley value in this class using a property which requires that sponsors do not benefit from mergers, or splitting into a set of sponsors.  相似文献   

20.
In this paper, we study the travelling salesman location problem on simple networks. The problem is to find the optimal home location of the salesman (e.g., a repair unit) that in each working day, must visit all the customers that require service. The number of customers as well as their location can change from day to day. In simple networks, each link belongs to at most one cycle. The paper includes O(n) algorithms for several types of simple networks and thus, avoids the calculation of 2n − 1 probabilities for each possible tour that may occur (customers are located at n nodesof the network).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号