首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate that the radiation-induced "zero-resistance state" observed in a two-dimensional electron gas is a result of the nontrivial structure of the density of states of the systems and the photon-assisted transport. A toy model of a quantum tunneling junction with oscillatory density of states in leads catches most of the important features of the experiments. We present a generalized Kubo-Greenwood conductivity formula for the photon-assisted transport in a general system and show essentially the same nature of the transport anomaly in a uniform system.  相似文献   

2.
We present measurements on plasmonic metamolecules under local excitation using cathodoluminescence which show a spatial redistribution of the local density of optical states at the same frequency where a sharp spectral Fano feature in extinction has been observed. Our analytical model shows that both near- and far-field effects arise due to interference of the same two eigenmodes of the system. We present quantitative insights both in a bare state, and in a dressed state picture that describe Fano interference either as near-field amplitude transfer between coupled bare states, or as interference of uncoupled eigenmodes in the far field. We identify the same eigenmode causing a dip in extinction to strongly enhance the radiative local density of optical states, making it a promising candidate for spontaneous emission control.  相似文献   

3.
We present a modified Wang-Landau algorithm for models with continuous degrees of freedom. We demonstrate this algorithm with the calculation of the joint density of states of ferromagnet Heisenberg models and a model polymer chain. The joint density of states contains more information than the density of states of a single variable-energy, but is also much more time consuming to calculate. We present strategies to significantly speed up this calculation for large systems over a large range of energy and order parameter.  相似文献   

4.
We study the quasiparticle transport coefficients in disordered d-wave superconductors. We find that spin and charge excitations are generally localized unless magnetic impurities are present. If the system is close to a nesting point in the impurity-scattering unitary limit, the tendency towards localization is reduced while the quasiparticle density of states gets enhanced by disorder. We also show that the residual repulsive interaction among quasiparticles has a delocalizing effect and increases the density of states.  相似文献   

5.
We present a conjecture relating the density of quantum resonances for an open chaotic system to the fractal dimension of the associated classical repeller. Mathematical arguments justifying this conjecture are discussed. Numerical evidence based on computation of resonances of systems of n disks on a plane are presented supporting this conjecture. The result generalizes the Weyl law for the density of states of a closed system to chaotic open systems.  相似文献   

6.
We present a temperature-independent Monte Carlo method for the determination of the density of states of lattice proteins that combines the fast ground-state search strategy of the new pruned-enriched Rosenbluth chain-growth method and multicanonical reweighting for sampling the complete energy space. Since the density of states contains all energetic information of a statistical system, we can directly calculate the mean energy, specific heat, Helmholtz free energy, and entropy for all temperatures. We apply this method to lattice proteins consisting of hydrophobic and polar monomers, and for the examples of sequences considered, we identify the transitions between native, globule, and random coil states. Since no special properties of heteropolymers are involved in this algorithm, the method applies to polymer models as well.  相似文献   

7.
Leon Balents 《Annals of Physics》2007,322(11):2635-2664
We present a general framework for describing the quantum phases obtained by doping paramagnetic Mott insulators on the square lattice. The undoped insulators are efficiently characterized by the projective transformations of various fields under the square lattice space group (the PSG). We show that the PSG also imposes powerful constraints on the doped system, and on the effective action for the vortex and Bogoliubov quasiparticle excitations of superconducting states. This action can also be extended across transitions to supersolid or insulating states at non-zero doping. For the case of a valence bond solid (VBS) insulator, we show that the doped system has the same PSG as that of elementary bosons with density equal to the density of electron Cooper pairs. We also discuss aspects of the action for a d-wave superconductor obtained by doping a “staggered-flux” spin liquid state.  相似文献   

8.
We present a summary of the main results obtained by a new method of calculating the electronic structure of solids and their surfaces in the tight-binding approximation. In addition to being able to reproduce the results of Kalkstein and Soven, we obtain the local density of states at atoms in the low index surfaces of fcc, hcp and bcc d-bands. We also include examples of the effect of surface dilation, the density of states at atoms in subsurface layers, and a very simple example of the adatom density of states.  相似文献   

9.
In this Letter, we investigate the control of finite dimensional ideal quantum systems in which the quantum states are represented by the density operators. A new Lyapunov function based on the Hilbert–Schmidt distance and mechanical quantity of the quantum system is given. We present a theoretical convergence result using LaSalle invariance principle. Applying the proposed Lyapunov method, the generation of the maximally entangled quantum states of two qubits is obtained.  相似文献   

10.
11.
We present the results of detailed theoretical investigations of changes in local density of total electronic surface states in 2D anisotropic atomic semiconductor lattice in vicinity of impurity atom for a wide range of applied bias voltage. We have found that taking into account changes in density of continuous spectrum states leads to the formation of a downfall at the particular value of applied voltage when we are interested in the density of states above the impurity atom or even to a series of downfalls for the fixed value of the distance from the impurity. The behaviour of local density of states with increasing of the distance from impurity along the chain differs from behaviour in the direction perpendicular to the chain. The article is published in the original.  相似文献   

12.
We present first-principles calculations on the structure instability and the electronic structure properties of cubic Ba0.5Sr0.5TiO3 (BST). The calculated total energy result shows that the Sr ions have a more important effect on the structure instability of BST system than the Ba ions. The off-center displacement of the Sr ions will lower the system energy and makes it instable. In order to understand the interaction between ions, the density of states and the charge density distribution were calculated. From the analysis of the density of states, we conclude that the hybridization between Ba p and O p is stronger than that between Sr p and O p. This is consistent with the analysis of the charge density distribution.  相似文献   

13.
It was found that tunneling current through a nanometer scale structure with strongly coupled localized states causes spatial redistribution of localized charges induced by Coulomb correlations. We present here theoretical investigation of this effect by means of Heisenberg equations for localized states electron filling numbers. This method makes it possible to take into account pair correlations of local electron density exactly. It is shown that inverse occupation of the two-level system caused by Coulomb correlations appears in particular range of applied bias. Described effects can give a possibility of charge manipulation in the proposed system. We also expect that described results can be observed in tunneling structures with impurities or with small quantum dots.  相似文献   

14.
We investigate a two-dimensional (2D) Bose system with the long range interactions in the presence of disorder. Formation of the bound states at strong impurity sites gives rise to a depletion of the superfluid density. We predict the intermediate superfluid state where the condensate and localized bosons are present simultaneously. We find that interactions suppress localization and that with the increase of the boson density the system experiences a sharp delocalization crossover into a state where all bosons are delocalized. We map our results onto a 3D system of vortices in type II superconductors in the presence of columnar defects; the intermediate superfluid state maps to an intermediate vortex liquid where vortex liquid neighbors pinned vortices. We predict the depinning crossover within the vortex liquid and depinning induced vortex lattice-Bose glass melting.  相似文献   

15.
We demonstrate coupling and entangling of quantum states in a pair of vertically aligned self assembled quantum dots by studying the dynamics of two interacting electrons driven by external electric field. The present entanglement involves the spatial degree of freedom for the two electrons system. We show that system of two interacting electrons initially delocalized (localized each in one dot) oscillate slowly in response to electric field, since the strong Coulomb repulsion makes them behaving so. We use an explicit formula for the entanglement of formation of two qubit in terms of the concurrence of the density operator. In ideal situations, entangled quantum states would not decohere during processing and transmission of quantum information. However, real quantum systems will inevitably be influenced by surrounding environments. We discuss the degree of entanglement of this system in which we introduce the decoherence effect caused by the acoustic phonon. In this entangled states proposal, the decohering time depends on the external parameters.  相似文献   

16.
We present a theory of low-frequency Raman scattering in glasses, based on the concept that light couples to the elastic strains via spatially fluctuating elasto-optic (Pockels) constants. We show that the Raman intensity is not proportional to the vibrational density of states (as was widely believed), but to a convolution of Pockels constant correlation functions with the dynamic strain susceptibilities of the glass. Using the dynamic susceptibilities of a system with fluctuating elastic constants we are able for the first time to describe the Raman intensity and the anomalous vibration spectrum of a glass on the same footing. Good agreement between the theory and experiment for the Raman spectrum, the density of states, and the specific heat is demonstrated at the example of glassy As(2)S(3).  相似文献   

17.
We present an exact real-space renormalization group (RSRG) scheme for the electronic Green's functions of one-dimensional tight-binding systems having both nearest-neighbor and next-nearest-neighbor hopping integrals, and determine the electronic density of states for the quasiperiodic Fibonacci chain. This RSRG method also gives the Lyapunov exponents for the eigenstates. The Lyapunov exponents and the analysis of the flow pattern of hopping integrals under renormalization provide information about the nature of the eigenstates. Next we develop a transfer matrix formalism for this generalized tight-binding system, which enables us to determine the wave function amplitudes. Interestingly, we observe that like the nearest-neighbor tight-binding Fibonacci chain, the present generalized tight-binding system also have critical eigenstates, Cantor-set energy spectrum and highly fragmented density of states. It indicates that these exotic physical properties are really the characteristics of the underlying quasiperiodic structure. Received 5 April 1999  相似文献   

18.
Gelio Alves 《Physica A》2008,387(26):6538-6544
We provide a complete thermodynamic solution of a 1D hopping model in the presence of a random potential by obtaining the density of states. Since the partition function is related to the density of states by a Laplace transform, the density of states determines completely the thermodynamic behavior of the system. We have also shown that the transfer matrix technique, or the so-called dynamic programming, used to obtain the density of states in the 1D hopping model may be generalized to tackle a long-standing problem in statistical significance assessment for one of the most important proteomic tasks—peptide sequencing using tandem mass spectrometry data.  相似文献   

19.
We present numerical calculation of the impact of electron-electron interaction on the behavior of density of states and optical properties of BeO,SiC and Boron-Nitride nanotubes and sheets.Hubbard model hamiltonian is applied to describe the dynamics of electrons on the lattice structure of theses compounds.The excitation spectrum of the system in the presence of local electronic interactions has been found using mean Seld approach.We find the band gap width in both optical absorption and density of states reduces with local Hubbard electronic interaction parameter.The absorption spectra exhibits the remarkable peaks,mainly owing to the divergence behavior of density of states and excitonic effects.Also we compare optical absorption frequency behavior of BeO,SiC and Boron-Nitride nanotubes with each other.Furthermore we investigate the optical properties of BeO and SiC sheets.A novel feature of optical conductivity of these structures is the decrease of frequency gap in the optical spectrum due to electronic interaction.  相似文献   

20.
We present an extension of the Tomonaga-Luttinger model in which left and right-moving particles have different Fermi velocities. We derive expressions for one-particle Green's functions, momentum-distributions, density of states, charge compressibility and conductivity as functions of both the velocity difference ε and the strength of the interaction β. This allows us to identify a novel restricted region in the parameter space in which the system keeps the main features of a Luttinger liquid but with an unusual behavior of the density of states and the static charge compressibility κ. In particular κ diverges on the boundary of the restricted region, indicating the occurrence of a phase transition. Received 20 May 2002 / Received in final form 23 August 2002 Published online 19 November 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号