首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study information processing in populations of boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes N, adaptive information processing drives the networks to a critical connectivity K(c)=2. For finite size networks, the connectivity approaches the critical value with a power law of the system size N. We show that network learning and generalization are optimized near criticality, given that the task complexity and the amount of information provided surpass threshold values. Both random and evolved networks exhibit maximal topological diversity near K(c). We hypothesize that this diversity supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the fitness values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.  相似文献   

2.
《Physical Communication》2008,1(2):134-145
Applications for wireless sensor networks require widespread, highly reliable communications even in the face of adversarial influences. Maintaining connectivity and secure communications between entities are vital networking properties towards ensuring the successful and accurate completion of desired sensing tasks. We examine the required communication range for nodes in a wireless sensor network with respect to several parameters. Network properties such as key predistribution schemes and node compromise attacks are modelled with several network parameters and studied in terms of how they influence global network connectivity. These networks are physically vulnerable to malicious behavior by way of node compromise attacks that may affect global connectivity. We introduce a metric that determines the resilience of a network employing a key predistribution scheme with respect to node compromise attacks. In this work,we provide the first study of global network connectivity and its relationship to node compromise attacks. Existing work considers the relationship between the probability of node compromise and the probability of link compromise and the relationship of the probability of secure link establishment and overall network connectivity for the Erdős network model. Here, we present novel work which combines these two relationships to study the relationship between node compromise attacks and global network connectivity. Our analysis is performed with regard to large-scale networks; however, we provide simulation results for both large-scale and small-scale networks. First, we derive a single expression to determine the required communication radius for wireless sensor networks to include the effects of key predistribution schemes. From this, we derive an expression for determining required communication range after an adversary has compromised a fraction of the nodes in the network. The required communication range represents the resource usage of nodes in a network to cope with key distribution schemes and node compromise attacks. We introduce the Resiliency-Connectivity metric, which measures the resilience of a network in expending its resources to provide global connectivity in adverse situations.  相似文献   

3.
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.  相似文献   

4.
Phoneme discrimination using connectionist networks   总被引:1,自引:0,他引:1  
The application of connectionist networks to speech recognition is assessed using a set of eight representative phonetic discrimination problems chose with respect to a theory of phonetics. A connectionist network model called the temporal flow model (TFM) is defined which represents temporal relationships using delay links and permits general patterns of connectivity. It is argued that the model has properties appropriate for time varying signals such as speech. Networks are trained using gradient descent methods of iterative nonlinear optimization to reduce the mean-squared error between the actual and the desired response of the output units. Separate network solutions are demonstrated for all eight phonetic discrimination problems for one male speaker. The network solutions are analyzed carefully and are shown in every case to make use of known acoustic phonetic cues. The network solutions vary in the degree to which they make use of context-dependent cues to achieve phoneme recognition. The network solutions were tested on data not used for training and achieved an average accuracy of 99.5%. It is concluded that acoustic phonetic speech recognition can be accomplished using connectionist networks.  相似文献   

5.
Two-peak and three-peak optimal complex networks   总被引:1,自引:0,他引:1  
A central issue in complex networks is tolerance of random failures and intentional attacks. Current literature emphasizes the dichotomy between networks with a power-law node connectivity distribution, which are robust to random failures but fragile to targeted attacks, versus networks with an exponentially decaying connectivity distribution, which are less tolerant to failures but more resilient to attacks. We prove analytically that the optimal network configuration under a classic measure of robustness is altogether different from both of the above: in all cases, failure and/or attack, there are no more than three distinct node connectivities in the optimal network.  相似文献   

6.
The network structure entropy has served as one of the index measuring network heterogeneity, but it gives no considerations to the impact of isolated nodes on the network structure. In addition, the all-terminal reliability is zero and is unable to compare it between disconnected networks. Therefore, the concept of network connectivity entropy is suggested to remove the current bottleneck and helps facilitate new index in terms of network connectivity reliability. This study fully proves the rules as follows: when the edges of network are diminishing, the newly-established network connectivity reliability will remain unchanged or become weaker; conversely, when the edges of network are increasing, the network connectivity reliability will remain unchanged or become stronger. Thus, the proposed index of network connectivity reliability is proved reasonable. Furthermore, the impaired metro network of Nanjing city is exemplified to demonstrate the validity and practicability of network connectivity reliability. The result shows that this new approach is in good position to compute network connectivity reliability quickly and effectively, and also to compare it between different networks.  相似文献   

7.
We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and remains finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.  相似文献   

8.
9.
A. Santiago 《Physica A》2009,388(14):2941-2948
In this paper we present a study of the influence of local affinity in heterogeneous preferential attachment (PA) networks. Heterogeneous PA models are a generalization of the Barabási-Albert model to heterogeneous networks, where the affinity between nodes biases the attachment probability of links. Threshold models are a class of heterogeneous PA models where the affinity between nodes is inversely related to the distance between their states. We propose a generalization of threshold models where network nodes have individual affinity functions, which are then combined to yield the affinity of each potential interaction. We analyze the influence of the affinity functions in the topological properties averaged over a network ensemble. The network topology is evaluated through the distributions of connectivity degrees, clustering coefficients and geodesic distances. We show that the relaxation of the criterion of a single global affinity still leads to a reasonable power-law scaling in the connectivity and clustering distributions under a wide spectrum of assumptions. We also show that the richer behavior of the model often exhibits a better agreement with the empirical observations on real networks.  相似文献   

10.
Chang-Yong Lee 《Physica A》2011,390(14):2728-2737
The database of microRNAs and their predicted target genes in humans were used to extract a microRNA co-target network. Based on the finding that more than two miRNAs can target the same gene, we constructed a microRNA co-target network and analyzed it from the perspective of the complex network. We found that a network having a positive assortative mixing can be characterized by small-world and scale-free characteristics which are found in most complex networks. The network was further analyzed by the nearest-neighbor average connectivity, and it was shown that the more assortative a microRNA network is, the wider the range of increasing average connectivity. In particular, an assortative network has a power-law relationship of the average connectivity with a positive exponent. A percolation analysis of the network showed that, although the network is diluted, there is no percolation transition in the network. From these findings, we infer that the microRNAs in the network are clustered together, forming a core group. The same analyses carried out on different species confirmed the robustness of the main results found in the microRNA networks of humans.  相似文献   

11.
We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.  相似文献   

12.

Background  

Both epilepsy patients and brain tumor patients show altered functional connectivity and less optimal brain network topology when compared to healthy controls, particularly in the theta band. Furthermore, the duration and characteristics of epilepsy may also influence functional interactions in brain networks. However, the specific features of connectivity and networks in tumor-related epilepsy have not been investigated yet. We hypothesize that epilepsy characteristics are related to (theta band) connectivity and network architecture in operated glioma patients suffering from epileptic seizures. Included patients participated in a clinical study investigating the effect of levetiracetam monotherapy on seizure frequency in glioma patients, and were assessed at two time points: directly after neurosurgery (t1), and six months later (t2). At these time points, magnetoencephalography (MEG) was recorded and information regarding clinical status and epilepsy history was collected. Functional connectivity was calculated in six frequency bands, as were a number of network measures such as normalized clustering coefficient and path length.  相似文献   

13.
Small-world and scale-free networks are known to be more easily synchronized than regular lattices, which is usually attributed to the smaller network distance between oscillators. Surprisingly, we find that networks with a homogeneous distribution of connectivity are more synchronizable than heterogeneous ones, even though the average network distance is larger. We present numerical computations and analytical estimates on synchronizability of the network in terms of its heterogeneity parameters. Our results suggest that some degree of homogeneity is expected in naturally evolved structures, such as neural networks, where synchronizability is desirable.  相似文献   

14.
Networks generated by local-world evolving network model display a transition from exponential network to power-law network with respect to connectivity distribution. We investigate statistical properties of the evolving networks and the responses of these networks under random errors and intentional attacks. It has been found that local world size M has great effect on the network's heterogeneity, thus leading to transitional behaviors in network's robustness against errors and attacks. Numerical results show that networks constructed with local preferential attachment mechanism can maintain the robustness of scale-free networks under random errors and concurrently improve reliance against targeted attacks on highly connected nodes.  相似文献   

15.
We present a method to infer the complete connectivity of a network from its stable response dynamics. As a paradigmatic example, we consider networks of coupled phase oscillators and explicitly study their long-term stationary response to temporally constant driving. For a given driving condition, measuring the phase differences and the collective frequency reveals information about how the units are interconnected. Sufficiently many repetitions for different driving conditions yield the entire network connectivity (the absence or presence of each connection) from measuring the response dynamics only. For sparsely connected networks, we obtain good predictions of the actual connectivity even for formally underdetermined problems.  相似文献   

16.
A maximum entropy (ME) method to generate typical scale-free networks has been recently introduced. We investigate the controllability of ME networks and Barabási–Albert preferential attachment networks. Our experimental results show that ME networks are significantly more easily controlled than BA networks of the same size and the same degree distribution. Moreover, the control profiles are used to provide insight into control properties of both classes of network. We identify and classify the driver nodes and analyze the connectivity of their neighbors. We find that driver nodes in ME networks have fewer mutual neighbors and that their neighbors have lower average degree. We conclude that the properties of the neighbors of driver node sensitively affect the network controllability. Hence, subtle and important structural differences exist between BA networks and typical scale-free networks of the same degree distribution.  相似文献   

17.
吴佳键  龚凯  王聪  王磊 《物理学报》2018,67(8):88901-088901
如何有效地应对和控制故障在相依网络上的级联扩散避免系统发生结构性破碎,对于相依网络抗毁性研究具有十分重要的理论价值和现实意义.最新的研究提出一种基于相依网络的恢复模型,该模型的基本思想是通过定义共同边界节点,在每轮恢复阶段找出符合条件的共同边界节点并以一定比例实施恢复.当前的做法是按照随机概率进行选择.这种方法虽然简单直观,却没有考虑现实世界中资源成本的有限性和择优恢复的必然性.为此,针对相依网络的恢复模型,本文利用共同边界节点在极大连通网络内外的连接边数计算边界节点的重要性,提出一种基于相连边的择优恢复算法(preferential recovery based on connectivity link,PRCL)算法.利用渗流理论的随机故障模型,通过ER随机网络和无标度网络构建的不同结构相依网络上的级联仿真结果表明,相比随机方法和度数优先以及局域影响力优先的恢复算法,PRCL算法具备恢复能力强、起效时间早且迭代步数少的优势,能够更有效、更及时地遏制故障在网络间的级联扩散,极大地提高了相依网络遭受随机故障时的恢复能力.  相似文献   

18.
Until recently the study of failure and vulnerability in complex networks focused on the role of high degree nodes, and the relationship between their removal and network connectivity. Recent evidence suggested that in some network configurations, the removal of lower degree nodes can also cause network fragmentation. We present a disassembling algorithm that identifies nodes that are core to network connectivity. The algorithm is based on network tearing in which communities are defined and used to construct a hierarchical structure. Cut-nodes, which are located at the boundaries of the communities, are the key interest. Their importance in the overall network connectivity is characterized by their participation with neighbouring communities in each level of the hierarchy. We examine the impact of these cut-nodes by studying the change in size of the giant component, local and global efficiencies, and how the algorithm can be combined with other community detection methods to reveal the finer internal structure within a community.  相似文献   

19.
We present a comparative network-theoretic analysis of the two largest global transportation networks: the worldwide air-transportation network (WAN) and the global cargo-ship network (GCSN). We show that both networks exhibit surprising statistical similarities despite significant differences in topology and connectivity. Both networks exhibit a discontinuity in node and link betweenness distributions which implies that these networks naturally segregate into two different classes of nodes and links. We introduce a technique based on effective distances, shortest paths and shortest path trees for strongly weighted symmetric networks and show that in a shortest path tree representation the most significant features of both networks can be readily seen. We show that effective shortest path distance, unlike conventional geographic distance measures, strongly correlates with node centrality measures. Using the new technique we show that network resilience can be investigated more precisely than with contemporary techniques that are based on percolation theory. We extract a functional relationship between node characteristics and resilience to network disruption. Finally we discuss the results, their implications and conclude that dynamic processes that evolve on both networks are expected to share universal dynamic characteristics.  相似文献   

20.
Studies have revealed that real complex networks are inherently vulnerable to the loss of high centrality nodes. These nodes are crucial to maintaining the network connectivity and are identified by classical measures, such as degree and betweenness centralities. Despite its significance, an assessment based solely on this vulnerability premise is misleading for the interpretation of the real state of the network concerning connectivity. As a matter of fact, some networks may be in a state of imminent fragmentation before such a condition is fully characterized by an analysis targeted solely on the centrally positioned nodes. This work aims at showing that, in fact, it is basically the global network configuration that is responsible for network fragmentation, as it may allow many other lower centrality nodes to seriously damage the network connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号