首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is (i) non-speculative or Wagner–Whitin (for instance, constant unit production costs and non-negative unit holding costs) and (ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies (i) and (ii). The formulation is based on mixing set relaxations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and potential effectiveness of this improved LP formulation on a few test instances, including instances with and without Wagner–Whitin costs, and with both non-decreasing and arbitrary capacities over time. This work was partly carried out within the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438. This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific responsibility is assumed by the authors.  相似文献   

2.
This paper proposes two new mixed integer programming models for capacitated multi-level lot-sizing problems with backlogging, whose linear programming relaxations provide good lower bounds on the optimal solution value. We show that both of these strong formulations yield the same lower bounds. In addition to these theoretical results, we propose a new, effective optimization framework that achieves high quality solutions in reasonable computational time. Computational results show that the proposed optimization framework is superior to other well-known approaches on several important performance dimensions.  相似文献   

3.
We investigate expressions for expected item fill rate in a periodic inventory system. The typical treatment of fill rate found in many operations management texts assumes infinite horizon, independent and stationary demand. For the case when the horizon is finite, we show that the expected value of the actual fill rate is greater than the value given by the infinite horizon expression. The implication of our results is that an inventory manager in a finite horizon situation who uses the infinite horizon expression to set stocking levels will achieve a higher than desired expected fill rate at greater than necessary inventory expense.  相似文献   

4.
A problem of lot-sizing and sequencing several products on a single machine is studied. The machine is imperfect in two senses: it can produce defective items and it can breakdown. The number of defective items for each product is given as an integer valued non-decreasing function of the manufactured quantity. The total machine breakdown time is given as a real valued non-decreasing function of the manufactured quantities of all the products. A sequence-dependent setup time is required to switch the machine from manufacturing one product to another. Two problem settings are considered. In the first, the objective is to minimize the completion time of the last item, provided that all the product demands for the good quality items are satisfied. In the second, the goal is to minimize the total cost of demand dissatisfaction, subject to an assumption that the completion time of the last item does not exceed a given upper bound. Computational complexity and algorithmic results are presented, including an FPTAS for a special case of the cost minimization problem, and computer experiments with the FPTAS.  相似文献   

5.
We consider the dynamic lot-sizing problem with finite capacity and possible lost sales for a process that could be kept warm at a unit variable cost for the next period t + 1 only if more than a threshold value Qt has been produced and would be cold, otherwise. Production with a cold process incurs a fixed positive setup cost, Kt and setup time, St, which may be positive. Setup costs and times for a warm process are negligible. We develop a dynamic programming formulation of the problem, establish theoretical results on the structure of the optimal production plan in the presence of zero and positive setup times with Wagner–Whitin-type cost structures. We also show that the solution to the dynamic lot-sizing problem with lost sales are generated from the full commitment production series improved via lost sales decisions in the presence of a warm/cold process.  相似文献   

6.
A pharmaceutical company raised the question whether an increased product portfolio could still be manufactured on the existing machinery. The proportional lot-sizing and scheduling problem (PLSP) seemed to be most appropriate to answer this question. However, although there are papers dealing with a multi-level PLSP none allows a zero lead time offset which is a prerequisite for the case considered here.  相似文献   

7.
Parallel machine scheduling problems with a single server   总被引:3,自引:0,他引:3  
In this paper, we consider the problem of scheduling jobs on parallel machines with setup times. The setup has to be performed by a single server. The objective is to minimize the schedule length (makespan), as well as the forced idle time. The makespan problem is known to be NP-hard even for the case of two identical parallel machines. This paper presents a pseudopolynomial algorithm for the case of two machines when all setup times are equal to one. We also show that the more general problem with an arbitrary number of machines is unary NP-hard and analyze some list scheduling heuristics for this problem. The problem of minimizing the forced idle time is known to be unary NP-hard for the case of two machines and arbitrary setup and processing times. We prove unary NP-hardness of this problem even for the case of constant setup times. Moreover, some polynomially solvable cases are given.  相似文献   

8.
This paper considers the uncapacitated lot sizing problem with batch delivery, focusing on the general case of time-dependent batch sizes. We study the complexity of the problem, depending on the other cost parameters, namely the setup cost, the fixed cost per batch, the unit procurement cost and the unit holding cost. We establish that if any one of the cost parameters is allowed to be time-dependent, the problem is NP-hard. On the contrary, if all the cost parameters are stationary, and assuming no unit holding cost, we show that the problem is polynomially solvable in time O(T3), where T denotes the number of periods of the horizon. We also show that, in the case of divisible batch sizes, the problem with time varying setup costs, a stationary fixed cost per batch and no unit procurement nor holding cost can be solved in time O(T3 logT).  相似文献   

9.
We consider a single product that is, subject to continuous decay, a multivariate demand function of price and time, shortages allowed and completely backlogged in a periodic review inventory system in which the selling price is allowed to adjust upward or downward periodically. The objective of this paper is to determine the periodic selling price and lot-size over multiperiod planning horizon so that the total discount profit is maximized. The proposed model can be used as an add-in optimizer like an advanced planning system in an enterprise resource planning system that coordinates distinct functions within a firm. Particular attention is placed on investigating the effect of periodic pricing jointly with shortages on the total discount profit. The problem is formulated as a bivariate optimization model solved by dynamic programming techniques coupled with an iterative search process. An intensive numerical study shows that the periodic pricing is superior to the fixed pricing in profit maximization. It also clarifies that shortages strategy can be an effective cost control mechanism for managing deterioration inventory.  相似文献   

10.
The on-line problem of scheduling on a batch processing machine with nonidentical job sizes to minimize makespan is considered. The batch processing machine can process a number of jobs simultaneously as long as the total size of these jobs being processed does not exceed the machine capacity. The processing time of a batch is given by the longest processing time of any job in the batch. Each job becomes available at its arrival time, which is unknown in advance, and its processing time becomes known upon its arrival. The paper deals with two variants: the case only with two distinct arrival times and the general case. For the first case, an on-line algorithm with competitive ratio 119/44 is given. For the latter one, a simple algorithm with competitive ratio 3 is given. For both variants the better ratios can be obtained if the problem satisfies proportional assumption.  相似文献   

11.
This study investigates a two-echelon supply chain model for deteriorating inventory in which the retailer’s warehouse has a limited capacity. The system includes one wholesaler and one retailer and aims to minimise the total cost. The demand rate in retailer is stock-dependent and in case of any shortages, the demand is partially backlogged. The warehouse capacity in the retailer (OW) is limited; therefore the retailer can rent a warehouse (RW) if needed with a higher cost compared to OW. The optimisation is done from both the wholesaler’s and retailer’s perspectives simultaneously. In order to solve the problem a genetic algorithm is devised. After developing a heuristic a numerical example together with sensitivity analysis are presented. Finally, some recommendations for future research are presented.  相似文献   

12.
We study two single-machine scheduling problems: minimizing the sum of weighted earliness, tardiness and due date assignment penalties and minimizing the weighted number of tardy jobs and due date assignment costs. We prove that both problems are strongly NP-hard and give polynomial solutions for some important special cases.  相似文献   

13.
We survey the main results presented in the authors PhD Thesis presented in June 2003 at the Université catholique de Louvain and supervised by Y. Pochet and L. A. Wolsey. The dissertation is written in English and is available from the author. In the first part of the thesis, we investigate the complexity and the polyhedral structure of various extensions of the uncapacitated single-item lot-sizing problem (Barany et al. 1984). In particular, we study models involving fixed charges on stocks, constant capacity and backlogging, and lower bounds on production. We describe algorithms, extended formulations, (facet-defining) valid inequalities and separation algorithms. Emphasis is placed on compact (i.e. of polynomial size) exact extended formulations. In a second part, we show how such extended reformulations for single-item problems can help to improve the solution of much more general production planning problems.Received: August 2003,  相似文献   

14.
In this paper, we study a vector scheduling problem with rejection on a single machine, in which each job is characterized by a d-dimension vector and a penalty, in the sense that, jobs can be either rejected by paying a certain penalty or assigned to the machine. The objective is to minimize the sum of the maximum load over all dimensions of the total vector of all accepted jobs, and the total penalty of rejected jobs. We prove that the problem is NP-hard and design two approximation algorithms running in polynomial time. When d is a fixed constant, we present a fully polynomial time approximation scheme.  相似文献   

15.
This paper deals with a single machine scheduling problems with availability constraints. The unavailability of machine results from periodic maintenance activities. In our research, a periodic maintenance consists of several maintenance periods. We consider a machine should stop to maintain after a periodic time interval or to change tools after a fixed amount of jobs processed simultaneously. Each maintenance period is scheduled after a periodic time interval. We study the problems under deterministic environment and flexible maintenance considerations. Preemptive operation is not allowed. In addition, we propose a more reasonable flexible model for the real production settings. The objective is to minimize the makespan. The proposed problem is NP-hard in the strong sense and some heuristic algorithms are provided. The purpose is to present an efficient and effective heuristic algorithm so that it will be straightforward and easy to implement. Computational results show that the proposed algorithm first fit decreasing (DFF) performs well.  相似文献   

16.
Production scheduling and maintenance planning are two interdependent issues that most often have been investigated independently. Although both preventive maintenance (PM) and minimal repair affect availability and failure rate of a machine, only a few researchers have considered this interdependency in the literature. Furthermore, most of the existing joint production and preventive maintenance scheduling methods assume that machine is available during the planning horizon and consider only a possible level for PM. In this research, an integrated model is proposed that coordinates preventive maintenance planning with single-machine scheduling to minimize the weighted completion time of jobs and maintenance cost, simultaneously. This paper not only considers multiple PM levels with different costs, times and reductions in the hazard rate of the machine, but also assumes that a machine failure may occur at any time. To illustrate the effectiveness of the suggested method, it is compared to two situations of no PM and a single PM level. Eventually, to tackle the suggested problem, multi-objective particle swarm optimization and non-dominated sorting genetic algorithm (NSGA-II) are employed and their parameters are tuned Furthermore, their performances are compared in terms of three metrics criteria.  相似文献   

17.
We consider multi-agent scheduling on a single machine, where the objective functions of the agents are of the max-form. For the feasibility model, we show that the problem can be solved in polynomial time even when the jobs are subject to precedence restrictions. For the minimality model, we show that the problem is strongly NP-hard in general, but can be solved in pseudo-polynomial-time when the number of agents is a given constant. We then identify some special cases of the minimality model that can be solved in polynomial-time.  相似文献   

18.
In this paper, we consider single machine scheduling problem in which job processing times are controllable variables with linear costs. We concentrate on two goals separately, namely, minimizing a cost function containing total completion time, total absolute differences in completion times and total compression cost; minimizing a cost function containing total waiting time, total absolute differences in waiting times and total compression cost. The problem is modelled as an assignment problem, and thus can be solved with the well-known algorithms. For the case where all the jobs have a common difference between normal and crash processing time and an equal unit compression penalty, we present an O(n log n) algorithm to obtain the optimal solution.  相似文献   

19.
This paper considers single machine scheduling with past-sequence-dependent (psd) delivery times, in which the processing time of a job depends on its position in a sequence. We provide a unified model for solving single machine scheduling problems with psd delivery times. We first show how this unified model can be useful in solving scheduling problems with due date assignment considerations. We analyze the problem with four different due date assignment methods, the objective function includes costs for earliness, tardiness and due date assignment. We then consider scheduling problems which do not involve due date assignment decisions. The objective function is to minimize makespan, total completion time and total absolute variation in completion times. We show that each of the problems can be reduced to a special case of our unified model and solved in O(n 3) time. In addition, we also show that each of the problems can be solved in O(nlogn) time for the spacial case with job-independent positional function.  相似文献   

20.
A markov model for a transfer line with two unreliable machines separated by a finite storage size buffer is introduced. Service time distribution for the two machines is Erlang whereas failure and repair times are assumed to be exponential random variables. The paper presents an efficient method to solve analytically the steady state probabilities of the system. This method is independent of the buffer size. We also include in the paper a study of the behavior of some systems performance measures such as the efficiency of the two machines and the production rate of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号