首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
智能制造和即时配送环境下的备件生产与运输协同调度问题是目前国内研究的一大热点,这是因为备件供应链响应速度已成为当前备件制造企业赢得客户的关键因素。为了提高客户满意度,尽可能缩短从客户下达定制化生产订单到订单配送完成的时间,本文建立了以所有客户总等待时间最短为目标的混合整数规划模型和集合覆盖模型,推导了最优解性质,并设计改进的分支定价算法求得最优解。通过将小规模算例结果与CPLEX进行对比,验证了模型和算法的有效性。多组算例测试结果表明,所提出的模型和算法可以有效提升智能制造环境下的备件供应链运作效率。  相似文献   

2.
We study the operations scheduling problem with delivery deadlines in a three-stage supply chain process consisting of (1) heterogeneous suppliers, (2) capacitated processing centres (PCs), and (3) a network of business customers. The suppliers make and ship semi-finished products to the PCs where products are finalized and packaged before they are shipped to customers. Each business customer has an order quantity to fulfil and a specified delivery date, and the customer network has a required service level so that if the total quantity delivered to the network falls below a given targeted fill rate, a non-linear penalty will apply. Since the PCs are capacitated and both shipping and production operations are non-instantaneous, not all the customer orders may be fulfilled on time. The optimization problem is therefore to select a subset of customers whose orders can be fulfilled on time and a subset of suppliers to ensure the supplies to minimize the total cost, which includes processing cost, shipping cost, cost of unfilled orders (if any), and a non-linear penalty if the target service level is not met. The general version of this problem is difficult because of its combinatorial nature. In this paper, we solve a special case of this problem when the number of PCs equals one, and develop a dynamic programming-based algorithm that identifies the optimal subset of customer orders to be fulfilled under each given utilization level of the PC capacity. We then construct a cost function of a recursive form, and prove that the resulting search algorithm always converges to the optimal solution within pseudo-polynomial time. Two numerical examples are presented to test the computational performance of the proposed algorithm.  相似文献   

3.
In this paper, we study the zero-inventory production and distribution problem with a single transporter and a fixed sequence of customers. The production facility has a limited production rate, and the delivery truck has non-negligible traveling times between locations. The order in which customers may receive deliveries is fixed. Each customer requests a delivery quantity and a time window for receiving the delivery. The lifespan of the product starts as soon as the production for a customer’s order is finished, which makes the product expire in a constant time. Since the production facility and the shipping truck are limited resources, not all the customers may receive the delivery within their specified time windows and/or within product lifespan. The problem is then to choose a subset of customers from the given sequence to receive the deliveries to maximize the total demand satisfied, without violating the product lifespan, the production/distribution capacity, and the delivery time window constraints. We analyze several fundamental properties of the problem and show that these properties can lead to a fast branch and bound search procedure for practical problems. A heuristic lower bound on the optimal solution is developed to accelerate the search. Empirical studies on the computational effort required by the proposed search procedure comparing to that required by CPLEX on randomly generated test cases are reported.  相似文献   

4.
本文考虑工件首先在单机上加工,完工的工件由一辆容量有限的车配送到指定客户的模型,目标是最小化makespan。对于工件物理大小相同的情况,我们考虑了常数个客户的情形,并且给出了一个多项式时间的动态规划算法。对于工件物理大小不同的情况,我们讨论了一类特殊的三个客户的情形,并给出了一个2-近似算法。  相似文献   

5.
This paper studies an inventory routing problem (IRP) with split delivery and vehicle fleet size constraint. Due to the complexity of the IRP, it is very difficult to develop an exact algorithm that can solve large scale problems in a reasonable computation time. As an alternative, an approximate approach that can quickly and near-optimally solve the problem is developed based on an approximate model of the problem and Lagrangian relaxation. In the approach, the model is solved by using a Lagrangian relaxation method in which the relaxed problem is decomposed into an inventory problem and a routing problem that are solved by a linear programming algorithm and a minimum cost flow algorithm, respectively, and the dual problem is solved by using the surrogate subgradient method. The solution of the model obtained by the Lagrangian relaxation method is used to construct a near-optimal solution of the IRP by solving a series of assignment problems. Numerical experiments show that the proposed hybrid approach can find a high quality near-optimal solution for the IRP with up to 200 customers in a reasonable computation time.  相似文献   

6.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

7.
The coordination of just-in-time production and transportation in a network of partially independent facilities to guarantee timely delivery to distributed customers is one of the most challenging aspect of supply chain management. From a theoretical perspective, the timely production/distribution can be viewed as a hybrid combination of planning, scheduling and routing problems, each notoriously affected by nearly prohibitive combinatorial complexity. From a practical viewpoint, the problem calls for a trade-off between risks and profits. This paper focuses on the ready-mixed concrete delivery: in addition to the mentioned complexity, strict time-constraints forbid both earliness and lateness of the supply. After developing a detailed model of the considered problem, we propose a novel meta-heuristic approach based on a hybrid genetic algorithm combined with constructive heuristics. A detailed case study derived from industrial data is used to illustrate the potential of the proposed approach.  相似文献   

8.
研究平行机环境下的供应链排序,即研究如何安排工件在平行机上加工,把加工完毕的工件分批发送给下游客户,使得生产排序费用和发送费用总和最少。这里,生产排序费用是用工件送到时间的函数表示;发送费用是由固定费用和与运输路径有关的可变费用两部分组成。研究以工件带权送到时间和作为生产排序费用的供应链排序问题,给出多项式时间近似算法,并分析算法性能比。  相似文献   

9.
本文从车辆路径的角度研究了具有一个配送中心、多台车辆结合前向物流配送和逆向物流回载的闭环供应链运输策略,考虑回收产品的不同形态和可分批运输的特点,引入库存限制和成本惩罚,建立并分析了问题的数学模型.通过引入参数2σ原则构造了先分组后组内运用基于TSP的插入算法进行优化调整的启发式求解方法.算例分析表明该策略是合理有效的.  相似文献   

10.
We consider an integrated production and distribution scheduling problem in a make-to-order business scenario. A product with a short lifespan (e.g., perishable or seasonal) is produced at a single production facility with a limited production rate. This means that the product expires in a constant time after its production is finished. Orders are received from a set of geographically dispersed customers, where a demand for the product and a time window for the delivery is associated with each customer for the planning period. A single vehicle with non-negligible traveling times between the locations is responsible for the deliveries. Due to the limited production and distribution resources, possibly not all customers may be supplied within their time windows or the lifespan. The problem consists in finding a selection of customers to be supplied such that the total satisfied demand is maximized. We extend the work by Armstrong et al. (Annals of Operations Research 159(1):395–414, 2008) on the problem for fixed delivery sequences by pointing out an error in their branch and bound algorithm and presenting a corrected variant. Furthermore, we introduce model extensions for handling delays of the production start as well as for variable production and distribution sequences. Efficient heuristic solution algorithms and computational results for randomly generated instances are presented.  相似文献   

11.
This paper addresses a location-routing problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. We propose an effective branch-and-cut algorithm for solving the LRPSPD. The proposed algorithm implements several valid inequalities adapted from the literature for the problem and a local search based on simulated annealing algorithm to obtain upper bounds. Computational results, for a large number of instances derived from the literature, show that some instances with up to 88 customers and 8 potential depots can be solved in a reasonable computation time.  相似文献   

12.
Suppose that customers are situated at the nodes of a transportation network, and a service company plans to locate a number of facilities that will serve the customers. The objective is to minimize the sum of the total setup cost and the total transportation cost. The setup cost of a facility is demand-dependent, that is, it depends on the number of customers that are served by the facility. Centralized allocation of customers to facilities is assumed, that is, the service company makes a decision about allocation of customers to facilities. In the case of a general network, the model can be formulated as a mixed integer programming problem. For the case of a tree network, we develop a polynomial-time dynamic programming algorithm.  相似文献   

13.
We consider supply chain scheduling problems where customers release jobs to a manufacturer that has to process the jobs and deliver them to the customers. The jobs are released on-line, that is, at any time there is no information on the number, release and processing times of future jobs; the processing time of a job becomes known when the job is released. Preemption is allowed. To reduce the total costs, processed jobs are grouped into batches, which are delivered to customers as single shipments; we assume that the cost of delivering a batch does not depend on the number of jobs in the batch. The objective is to minimize the total cost, which is the sum of the total flow time and the total delivery cost. For the single-customer problem, we present an on-line two-competitive algorithm, and show that no other on-line algorithm can have a better competitive ratio. We also consider an extension of the algorithm for the case of m customers, and show that its competitive ratio is not greater than 2m if the delivery costs to different customers are equal.  相似文献   

14.
This paper considers the vehicle routing problem with pickups and deliveries (VRPPD) where the same customer may require both a delivery and a pickup. This is the case, for instance, of breweries that deliver beer or mineral water bottles to a set of customers and collect empty bottles from the same customers. It is possible to relax the customary practice of performing a pickup when delivering at a customer, and postpone the pickup until the vehicle has sufficient free capacity. In the case of breweries, these solutions will often consist of routes in which bottles are first delivered until the vehicle is partly unloaded, then both pickup and delivery are performed at the remaining customers, and finally empty bottles are picked up from the first visited customers. These customers are revisited in reverse order, thus giving rise to lasso shaped solutions. Another possibility is to relax the traditional problem even more and allow customers to be visited twice either in two different routes or at different times on the same route, giving rise to a general solution. This article develops a tabu search algorithm capable of producing lasso solutions. A general solution can be reached by first duplicating each customer and generating a Hamiltonian solution on the extended set of customers. Test results show that while general solutions outperform other solution shapes in term of cost, their computation can be time consuming. The best lasso solution generated within a given time limit is generally better than the best general solution produced with the same computing effort.  相似文献   

15.
In the Vehicle Routing Problem with Deliveries, Selective Pickups and Time Windows, the set of customers is the union of delivery customers and pickup customers. A fleet of identical capacitated vehicles based at the depot must perform all deliveries and profitable pickups while respecting time windows. The objective is to minimize routing costs, minus the revenue associated with the pickups. Five variants of the problem are considered according to the order imposed on deliveries and pickups. An exact branch-and-price algorithm is developed for the problem. Computational results are reported for instances containing up to 100 customers.  相似文献   

16.
This paper presents a decision support system (DSS) employing a metaheuristic algorithm called BoneRoute, for solving the open vehicle routing problem (OVRP). The OVRP deals with the problem of finding a set of vehicle routes, for a fleet of capacitated vehicles to satisfy the delivery requirements of customers, without returning to the distribution centre. The computational performance of the BoneRoute algorithm for the OVRP was found to be very efficient, producing new best solutions over a set of well-known published case studies examined. Technical and managerial issues aroused from the ad hoc connections between the geographical information system (GIS), the routing technique used for calculating shortest paths and the BoneRoute algorithm for finding the optimal sequence of customers, were faced successfully.  相似文献   

17.
Half-life is a unique characteristic of radioactive substances used in a variety of medical treatments. Radioisotope F-18 used for diagnosing and monitoring many types of cancers has a half-life of 110 minutes. As such, it requires careful coordination of production and delivery by manufacturers and medical end-users. To model this critical production and delivery problem, we develop a mixed integer program and propose a variant of a large neighborhood search algorithm with various improvement algorithms. We conduct several computational experiments to demonstrate the effectiveness of the proposed approach. The method when applied in a case study shows that improvement in terms of both time and cost is possible in the production and delivery of F-18.  相似文献   

18.
The problem of scheduling delivery vehicles from a number of depots to customers, subject to constraints on load and distance or time, is considered. A new algorithm is presented; this allows routes from several depots to be constructed simultaneously, subject to restrictions on numbers of vehicles at individual depots. Where too many customers require service, a flexible priority rule will select those to be served. Results for the single depot case are compared with other known algorithms; further results are given and discussed for cases of several depots.  相似文献   

19.
The delivery of goods from a warehouse to local customers is an important and practical problem of a logistics manager. In reality, we are facing the fluctuation of demand. When the total demand is greater than the whole capacity of owned trucks, the logistics managers may consider using an outsider carrier.Logistics managers can make a selection between a truckload (a private truck) and a less-than-truckload carrier (an outsider carrier). Selecting the right mode to transport a shipment may bring significant cost savings to the company.In this paper, we address the problem of routing a fixed number of trucks with limited capacity from a central warehouse to customers with known demand. The objective of this paper is developing a heuristic algorithm to route the private trucks and to make a selection of less-than-truckload carriers by minimizing a total cost function. Both the mathematical model and the heuristic algorithm are developed. Finally, some computational results and suggestions for future research are presented.  相似文献   

20.
This paper develops a fuzzy multi-period production planning and sourcing problem with credibility objective, in which a manufacturer has a number of plants or subcontractors. According to the credibility service levels set by customers in advance, the manufacturer has to satisfy different product demands. In the proposed production problem, production cost, inventory cost and product demands are uncertain and characterized by fuzzy variables. The problem is to determine when and how many products are manufactured so as to maximize the credibility of the fuzzy costs not exceeding a given allowable invested capital, and this credibility can be regarded as the investment risk criteria in fuzzy decision systems. In the case when the fuzzy parameters are mutually independent gamma distributions, we can turn the service level constraints into their equivalent deterministic forms. However, in this situation the exact analytical expression for the credibility objective is unavailable, thus conventional optimization algorithms cannot be used to solve our production planning problems. To overcome this obstacle, we adopt an approximation scheme to compute the credibility objective, and deal with the convergence about the computational method. Furthermore, we develop two heuristic solution methods. The first is a combination of the approximation method and a particle swarm optimization (PSO) algorithm, and the second is a hybrid algorithm by integrating the approximation method, a neural network (NN), and the PSO algorithm. Finally, we consider one 6-product source, 6-period production planning problem, and compare the effectiveness of two algorithms via numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号