首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
Up to now the few existing models, that consider learning effects in scheduling, concentrate on learning-by-doing (autonomous learning). But recent contributions to the literature on learning in manufacturing organizations emphasize the important impact of proactive investments in technological knowledge on the learning rate (induced learning). In the present paper, we focus on a scheduling problem where the processing times decrease according to a learning rate, which can be influenced by an initial cost-inducing investment. Thus we have integrated into our model both aspects of learning––autonomous and induced––thereby highlighting the management's responsibility to invest in technological knowledge enhancement. We have been able to derive some structural properties of the problem and present a polynomially bound solution procedure which optimally solves the problem by using these properties. The optimal solution to the scheduling problem contains––of course–– information on the optimal level of proactive investments in learning.  相似文献   

2.
The job-shop scheduling problem (JSP) is one of the hardest problems (NP-complete problem). In a lot of cases, the combination of goals and resource exponentially increases search space. The objective of resolution of such a problem is generally, to maximize the production with a lower cost and makespan. In this paper, we explain how to modify the objective function of genetic algorithms to treat the multi-objective problem and to generate a set of diversified “optimal” solutions in order to help decision maker. We are interested in one of the problems occurring in the production workshops where the list of demands is split into firm (certain) jobs and predicted jobs. One wishes to maximize the produced quantity, while minimizing as well as possible the makespan and the production costs. Genetic algorithms are used to find the scheduling solution of the firm jobs because they are well adapted to the treatment of the multi-objective optimization problems. The predicted jobs will be inserted in the real solutions (given by genetic algorithms). The solutions proposed by our approach are compared to the lower bound of the cost and makespan in order to prove the quality and robustness of our proposed approach.  相似文献   

3.
项目调度中的时间和费用是两个重要的指标,而在不确定环境下进度计划的鲁棒性则是保证项目平稳实施的关键。本文研究不确定环境下的多目标项目调度优化问题,以优化项目的工期、鲁棒值和成本为目标安排各活动的开始时间。基于此,作者构建多目标项目调度优化模型,将模型分解为三个子模型分析目标间的权衡关系,然后设计非劣排序遗传算法进行求解,应用精英保留策略和基于子模型权衡关系的优化策略优化算法,进行算法测试和算例参数敏感性分析。最后,应用上述方法研究一个项目实例,计算得到非劣解集,实例的敏感性分析结果进一步验证了三个目标间的权衡关系,据此提出资源的有效利用策略。本文的研究可以为多目标项目调度制定进度计划提供定量化决策支持。  相似文献   

4.
基于遗传算法的多目标柔性工作车间调度问题求解   总被引:1,自引:0,他引:1  
本文针对柔性工作车间调度问题给出了一个有意义的综合目标尽可能缩短制造周期的同时尽可能的减少机器负荷。由于传统遗传算法在多目标柔性工作车间调度问题上的局限性,我们提出了一种改进遗传算法:首先,我们给出了针对综合目标的工序调度算法获得初始集合;接着,针对柔性工作车间调度问题的特点,我们在常用的基于工序顺序的编码方法上融入了基于机器分配的编码方法,并据此设计了相应的交叉变异操作;最后借鉴了物种进化现象中的环境迁移思想设计了解决多目标优化问题的迁移操作。实验结果表明,改进的遗传算法在多目标柔性工作车间调度问题的解决上要优于传统遗传算法。  相似文献   

5.
During several decades, research in production scheduling mainly concerns a single criterion to optimize. However, the analysis of the performance of a schedule often involves more than one aspect and therefore requires multi-objective analysis. Such situation appears in the real case study considered here.  相似文献   

6.
The performance of a scheduling system, in practice, is not evaluated to satisfy a single objective, but to obtain a trade-off schedule regarding multiple objectives. Therefore, in this research, I make use of multiple objective decision-making method, a global criterion approach, to develop a multi-objective scheduling problem model with different due-dates on parallel machines processes, in which consider three performance measures, namely minimum run time of every machine, earlierness time (no tardiness) and process time of every job, simultaneously. According to this special multi-objective scheduling problem, the method of reverse order drawing GATT will be proposed, at the same time, bring forward a united search particle swarm optimization algorithm (USPSOA) solves this multi-objective scheduling problem. The validity and adaptability of the USPSOA is investigated through experimental results.  相似文献   

7.
This research seeks to propose innovative routing and scheduling strategies to help city couriers reduce operating costs and enhance service level. The strategies are realized by constructing a new type of routing and scheduling problem. The problem directly takes into account the inherent physical and operating constraints associated with riding in city distribution networks, which makes the problem involve multiple objectives and visiting specified nodes and arcs. Through network transformations, this study first formulates the city-courier routing and scheduling problem as a multi-objective multiple traveling salesman problem with strict time windows (MOMTSPSTW) that is NP-hard and new to the literature, and then proposes a multi-objective Scatter Search framework that seeks to find the set of Pareto-optimal solutions to the problem. Various new and improved sub-procedures are embedded in the solution framework. This is followed by an empirical study that shows and analyzes the results of applying the proposed method to a real-life city-courier routing and scheduling problem.  相似文献   

8.
Most of research in production scheduling is concerned with the optimization of a single criterion. However the analysis of the performance of a schedule often involves more than one aspect and therefore requires a multi-objective treatment. In this research, with combination of two multiple objective decision-making methods, min–max and weighted techniques, a new solution presentation method and a robust hybrid metaheuristic, we solved sequence-dependent setup time hybrid flowshop scheduling problems. In this paper for reflecting real-world situation adequately, we assume the processing time of each job depends on the speed of machine and amount of resource allocated to each machine at the stage which is processed on it. In formulation of min–max type, the decision-maker can have the flexibility of mixed use of weights and distance parameter in expressing desired improvement on produced Pareto optimal solutions. To minimize makespan and total resource allocation costs, the proposed hybrid approach is robust, fast, and simply structured, and comprises two components: genetic algorithm and a variable neighborhood search. The comparison shows the proposal to be very efficient for different structure instances.  相似文献   

9.
When solving a product/process design problem, we must exploit the available degrees of freedom to cope with a variety of issues. Alternative process plans can be generated for a given product, and choosing one of them has implications on manufacturing functions downstream, including planning/scheduling. Flexible process plans can be exploited in real time to react to machine failures, but they are also relevant for off-line scheduling. On the one hand, we should select a process plan in order to avoid creating bottleneck machines, which would deteriorate the schedule quality; on the other one we should aim at minimizing costs. Assessing the tradeoff between these possibly conflicting objectives is difficult; actually, it is a multi-objective problem, for which available scheduling packages offer little support. Since coping with a multi-objective scheduling problem with flexible process plans by an exact optimization algorithm is out of the question, we propose a hierarchical approach, based on a decomposition into a machine loading and a scheduling sub-problem. The aim of machine loading is to generate a set of efficient (non-dominated) solutions with respect to the load balancing and cost objectives, leaving to the user the task of selecting a compromise solution. Solving the machine loading sub-problem essentially amounts to selecting a process plan for each job and to routing jobs to the machines; then a schedule must be determined. In this paper we deal only with the machine loading sub-problem, as many scheduling methods are already available for the problem with fixed process plans. The machine loading problem is formulated as a bicriterion integer programming model, and two different heuristics are proposed, one based on surrogate duality theory and one based on a genetic descent algorithm. The heuristics are tested on a set of benchmark problems.  相似文献   

10.
为了提升服务大规模定制(SMC)模式下供应链系统的运作柔性,应对客户较强的多样化需求特征,本文在对服务定制特征分析、服务阶段界定以及服务规模效应探讨的基础上,指出SCM模式下的供应链调度问题是一个典型的随机需求与随机资源约束的多目标动态优化问题。研究了SMC模式下供应链调度的优化目标与约束条件,建立了完整的随机多目标动态调度优化数学模型。基于SMC运作的特点,运用改进的蚁群算法对调度问题进行了求解。最后,通过实例分析了模型及算法的可行性、有效性及适用性。  相似文献   

11.
This paper concerns the domain of flexible manufacturing systems (FMS) and focuses on the scheduling problems encountered in these systems. We have chosen the cyclic behaviour to study this problem, to reduce its complexity. This cyclic scheduling problem, whose complexity is NP-hard in the general case, aims to minimise the work in process (WIP) to satisfy economic constraints. We first recall and discuss the best known cyclic scheduling heuristics. Then, we present a two-step resolution approach. In the first step, a performance analysis is carried out; it is based on the Petri net modelling of the production process. This analysis resolves some indeterminism due to the system’s flexibility and allows a lower bound of the WIP to be obtained. In the second step, after a formal model of the scheduling problem has been given, we describe a genetic algorithm approach to find a schedule which can reach the optimal production speed while minimizing the WIP. Finally, our genetic approach is validated and compared with known heuristics on a set of test problems.  相似文献   

12.
The hot metal is produced from the blast furnaces in the iron plant and should be processed as soon as possible in the subsequent steel plant for energy saving. Therefore, the release times of hot metal have an influence on the scheduling of a steel plant. In this paper, the scheduling problem with release times for steel plants is studied. The production objectives and constraints related to the release times are clarified, and a new multi-objective scheduling model is built. For the solving of the multi-objective optimization, a hybrid multi-objective evolutionary algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is proposed. In the hybrid multi-objective algorithm, an efficient decoding heuristic (DH) and a non-dominated solution construction method (NSCM) are proposed based on the problem-specific characteristics. During the evolutionary process, individuals with different solutions may have a same chromosome because the NSCM constructs non-dominated solutions just based on the solution found by DH. Therefore, three operations in the original NSGA-II process are modified to avoid identical chromosomes in the evolutionary operations. Computational tests show that the proposed hybrid algorithm based on NSGA-II is feasible and effective for the multi-objective scheduling with release times.  相似文献   

13.
In this paper, we propose a search technique for nurse scheduling, which deals with it as a multi-objective problem. For each nurse, we first randomly generate a set of legal shift patterns which satisfy all shift-related hard constraints. We then employ an adaptive heuristic to quickly find a solution with the least number of violations on the coverage-related hard constraint by assigning one of the available shift patterns of each nurse. Next, we apply a coverage repairing procedure to make the resulting solution feasible, by adding/removing any under-covered/over-covered shifts. Finally, to satisfy the soft constraints (or preferences), we present a simulated annealing based search method with the following two options: one with a weighted-sum evaluation function which encourages moves towards users?? predefined preferences, and another one with a domination-based evaluation function which encourages moves towards a more diversified approximated Pareto set. Computational results demonstrate that the proposed technique is applicable to modern hospital environments.  相似文献   

14.
In this paper, we present a multi-objective linear fractional programming (MOLFP) approach for multi-objective linear fuzzy goal programming (MOLFGP) problem. Here, we consider a problem in which a set of pair of goals are optimized in ratio rather than optimizing them individually. In particular, we consider the optimization of profit to cash expenditure and crop production in various seasons to land utilization as a fractional objectives and used remaining goals in its original form. Further, the goals set in agricultural production planning are conflicting in nature; thus we use the concept of conflict and nonconflict between goals for computation of appropriate aspiration level. The method is illustrated on a problem of agricultural production system for comparison with Biswas and Pal [1] method to show its suitability.  相似文献   

15.
We consider a single-machine scheduling problem with a multi-level product structure. Setups are required if the machine changes production from one product type to another, and the scheduling decision must satisfy dynamic demand. We propose a lotsizing as well as a scheduling model, and we compare solution procedures for both models on a very restricted set of instances. As a result the multi-level structure complicates the inventory balance constraints in the lotsizing model. In the scheduling model, however, the multi-level structure translates into precedence constraints between jobs (leading to a smaller search space) which allows it to solve the scheduling model to optimality.  相似文献   

16.
针对多目标环境下柔性作业车间的调度问题,以最小化最大完工时间和惩罚值为目标,建立调度问题的数学模型,提出了基于混沌理论的量子粒子群算法。针对实际生产交货期不确定的特点,在量子粒子群算法基础上,提出引入混沌机制建立初始群的方法;利用混沌机制的遍历性,提出混沌局部优化策略;为获取最优调度方案提出了引入多指标加权灰靶选择策略。通过典型基准算例和对比测试,验证了所提出的算法获得最满意调度方案的可行性和求解多目标柔性作业车间调度问题的有效性。  相似文献   

17.
Machine scheduling with an availability constraint   总被引:18,自引:0,他引:18  
Most literature in scheduling assumes that machines are available simultaneously at all times. However, this availability may not be true in real industry settings. In this paper, we assume that the machine may not always be available. This happens often in the industry due to a machine breakdown (stochastic) or preventive maintenance (deterministic) during the scheduling period. We study the scheduling problem under this general situation and for the deterministic case.We discuss various performance measures and various machine environments. In each case, we either provide a polynomial optimal algorithm to solve the problem, or prove that the problem is NP-hard. In the latter case, we develop pseudo-polynomial dynamic programming models to solve the problem optimally and/or provide heuristics with an error bound analysis.This research was supported in part by NSF grant DDM 9201627  相似文献   

18.
Nowadays, Grid computing is increasingly showing a service-oriented tendency and as a result, providing quality of service (QoS) has raised as a relevant issue in such highly dynamic and non-dedicated systems. In this sense, the role of scheduling strategies is critical and new proposals able to deal with the inherent uncertainty of the grid state are needed in a way that QoS can be offered. Fuzzy rule-based schedulers are emerging scheduling schemas in Grid computing based on the efficient management of grid resources imprecise state and expert knowledge application to achieve an efficient workload distribution. Given the diverse and usually conflicting nature of the scheduling optimization objectives in grids considering both users and administrators requirements, these strategies can benefit from multi-objective strategies in their knowledge acquisition process greatly. This work suggests the QoS provision in the grid scheduling level with fuzzy rule-based schedulers through multi-objective knowledge acquisition considering multiple optimization criteria. With this aim, a novel learning strategy for the evolution of fuzzy rules based on swarm intelligence, Knowledge Acquisition with a Swarm Intelligence Approach (KASIA) is adapted to the multi-objective evolution of an expert grid meta-scheduler founded on Pareto general optimization theory and its performance with respect to a well-known genetic strategy is analyzed. In addition, the fuzzy scheduler with multi-objective learning results are compared to those of classical scheduling strategies in Grid computing.  相似文献   

19.
In this paper the following chemical batch scheduling problem is considered: a set of orders has to be processed on a set of facilities. For each order a given amount of a product must be produced by means of chemical reactions before a given deadline. The production consists of a sequence of processes whereby each process has to be performed by one facility out of a given subset of facilities allowed for this process. The processing times depend on the choice of the facility and the processing is done in batch mode with given minimum and maximum sizes. The problem is to assign the processes to the facilities, splitting them into batches, and scheduling these batches in order to produce the demands within the given deadlines. For the scheduling part of the problem we present an approach based on the following steps. First, a procedure to calculate the minimum number of batches needed to satisfy the demands is presented. Based on this, the given problem is modeled in two different ways: as a general shop scheduling problem with set-up times or as scheduling problem with positive time-lags. Finally, a two-phase tabu search method is presented which is based on the two different formulations of the problem. The method is tested on some real world data. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
In the last few years, a significant number of multi-objective metaheuristics have been proposed in the literature in order to address real-world problems. Local search methods play a major role in many of these metaheuristic procedures. In this paper, we adapt a recent and popular indicator-based selection method proposed by Zitzler and Künzli in 2004, in order to define a population-based multi-objective local search. The proposed algorithm is designed in order to be easily adaptable, parameter independent and to have a high convergence rate. In order to evaluate the capacity of our algorithm to reach these goals, a large part of the paper is dedicated to experiments. Three combinatorial optimisation problems are tested: a flow shop problem, a ring star problem and a nurse scheduling problem. The experiments show that our algorithm can be applied with success to different types of multi-objective optimisation problems and that it outperforms some classical metaheuristics. Furthermore, the parameter sensitivity analysis enables us to provide some useful guidelines about how to set the parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号