首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.

Ligand properties of coordination and organometallic compounds are examined on the basis of acid-base interactions of metal-containing bases and Lewis acids. Such interactions lead to homo- or heteronuclear di- and polynuclear complexes. Special attention is given to coordinatively-unsaturated molecules of classic Werner complexes, o -hydroxyazomethine chelates, metal carbonyls and their derivatives, ferrocenes with donor fragments, and coordinated heteroaromatic compounds.  相似文献   

2.
Transition metal complexes in which hydrocarbons serve as σ,σ-, σ,π- or π,π-bound bridging ligands are currently of great interest. This review presents efficient and directed syntheses for such compounds, which often have very aesthetic structures. These reactions are among the most important reaction types in modern organometallic chemistry. They can be a useful aid for the synthesis of tailor-made compounds, for example, for models of catalytic processes and, specifically, for the construction of heterometallic compounds. We will discuss reactions of electrophilic complexes with nucleophilic ones, numerous transformations of (functionalized) hydrocarbons with metal complexes, the currently very topical complexes with bridging acetylide and carbide ligands, and organometallic polymers, which can be expected to have interesting and novel materials properties. Chisholm
  • 1 M. H. Chisholm, Polyhedron 1988 , 7, 757–1077.
  • has described the importance of these complexes as follows: “Central to the development of polynuclear and cluster chemistry are bridging ligands and central to organometallic chemistry are metal–carbon bonds. Thus bridging ligands hold a pivotal role ins the development of Binuclear and polynuclear organometallic chemistry”.  相似文献   

    3.
    Organometallic complexes (OMCs) consisting of organic and metal active moieties have shown immense potential for application in solar cells. The diverse structure, rich porosity, and unique charge centers of OMCs enable them to be functional in solar cells. In this review, we introduced four types of OMCs, such as crown organometallic complexes, β-diketone metal complexes, cyclometallic complexes, and main chain metal-containing polymers, providing an in-depth analysis of the structure-performance relationship. OMCs could serve as active or interlayer materials in a variety of solar cell systems such as organic solar cells, perovskite solar cells, and dye-sensitized solar cells, especially some metals to improve the photoelectric performance of the device as dopants. In the end, perspectives on the opportunities and challenges of OMCs are given.  相似文献   

    4.
    In Portugal, publications with mechanochemical methods date back to 2009, with the report on mechanochemical strategies for the synthesis of metallopharmaceuticals. Since then, mechanochemical applications have grown in Portugal, spanning several fields, mainly crystal engineering and supramolecular chemistry, catalysis, and organic and inorganic chemistry. The area with the most increased development is the synthesis of multicomponent crystal forms, with several groups synthesizing solvates, salts, and cocrystals in which the main objective was to improve physical properties of the active pharmaceutical ingredients. Recently, non-crystalline materials, such as ionic liquids and amorphous solid dispersions, have also been studied using mechanochemical methods. An area that is in expansion is the use of mechanochemical synthesis of bioinspired metal-organic frameworks with an emphasis in antibiotic coordination frameworks. The use of mechanochemistry for catalysis and organic and inorganic synthesis has also grown due to the synthetic advantages, ease of synthesis, scalability, sustainability, and, in the majority of cases, the superior properties of the synthesized materials. It can be easily concluded that mechanochemistry is expanding in Portugal in diverse research areas.  相似文献   

    5.
    The mechanochemical synthesis of nanomaterials for catalytic applications is a growing research field due to its simplicity, scalability, and eco-friendliness. Besides, it provides materials with distinct features, such as nanocrystallinity, high defect concentration, and close interaction of the components in a system, which are, in most cases, unattainable by conventional routes. Consequently, this research field has recently become highly popular, particularly for the preparation of catalytic materials for various applications, ranging from chemical production over energy conversion catalysis to environmental protection. In this Review, recent studies on mechanochemistry for the synthesis of catalytic materials are discussed. Emphasis is placed on the straightforwardness of the mechanochemical route—in contrast to more conventional synthesis—in fabricating the materials, which otherwise often require harsh conditions. Distinct material properties achieved by mechanochemistry are related to their improved catalytic performance.  相似文献   

    6.
    This article introduces photochromic properties together with structures of organometallic compounds that undergo photo-induced structural rearrangement. The aim of this review is to survey the research on photochromism by using organometallics which possess by their own nature the properties responsible for the photochromism such as bonding and structural fluxionality, electronic state fluctuation, and photochemically active characteristic in both solution and the solid state. Therefore, the organometallics which include the well-characterized organic photochromic moieties, considered to be derivatives of such kinds of organic photochromic compounds, are excluded in this article. Mono-, di-, and poly-nuclear organometallic compounds are presented based on the reaction types such as linkage isomerization, haptotropic rearrangement, and reorganization of metal–ligand and/or metal–metal bonds. Very recently, the crystalline-state photochromism is becoming an attractive field of photochromic chemistry. As a demonstrative example, the photochromism of organometallic rhodium dinuclear complexes having a dithionite ligand (μ-O2SSO2), which shows 100% reversible interconversion in the crystalline-state and have been developed in the authors’ laboratory, will be discussed.  相似文献   

    7.
    N-Heterocyclic carbenes (NHCs) are widely used as ligands in catalysis by transition metal complexes. The catalytic activity of transition metal NHC complexes is much higher than that of the transition metal complexes bearing the phosphine and nitrogen-containing ligands. They show excellent catalytic performance in different transformations of the organic compounds, especially in the carbon—carbon and carbon—element bond forming reactions. Palladium NHC complexes are very efficient catalysts for the cross-coupling reactions. On the other hand, nickel is less expensive and regarded as a promising alternative to palladium and, therefore, it attracts increasing attention from the researches. The present review is focused on the recent advances in the synthesis of N-heterocyclic carbene complexes of nickel and palladium and their application in catalysis of cross-coupling reactions of organic, organoelement and organometallic compounds with organic halides.  相似文献   

    8.
    倍半硅氧烷作为催化剂载体硅胶表面结构与性能研究的模型,可以通过表征其表面反应性质来直观认识硅胶负载型催化剂的作用机制。过去几十年来,倍半硅氧烷的研究呈现飞跃式的发展态势,开发出许多新化合物和新合成方法,并在一些催化过程中得到应用。将倍半硅氧烷作为金属化合物的配体,极大地丰富了元素化学的内容。本文重点介绍了合成含金属笼型倍半硅氧烷的相关进展,同时介绍了含金属笼型倍半硅氧烷在聚合物材料应用中的研究。  相似文献   

    9.
    Typically, metal complexes are constituted of an acceptor metal ion and one or more Iigands containing the donor atoms. Accordingly, the properties of a metal complex are equally dependent on the nature of the metal ion and the ligands. Minute structural variations in the ligand will may result in linear changes in the respective energetic parameters and such linear relationships have paramount importance in organometallic chemistry. The variation in ligands is virtually limitless and substantial because of the extent of organic chemistry available for the modelling of desirable ligands, apart from the variation in metal ions. Anyhow, there is still a need for new parameters for the design and quantification of new ligands which in turn leads to the synthesis of metal complexes with possibly predictable chemical properties. Previous studies have demonstrated that quantum chemically derived molecular electrostatic potential (MESP) parameters can be listed as one of the superior quantifiers in this regard, which can act as an effective ligand electronic parameter. The interaction between the ligand part and metal-containing part will be crucial in assessing the reactivity of organometallic complexes. Here we are applying MESP based substituent constants derived from substituted benzenes to forecast the interaction energies in (pyr*)W(CO)5, (NHC*)Mo(CO)5 and (η6-arene*)Cr(CO)3 complexes. Ligands and metal ions are varied in each case for better understanding and transparency.  相似文献   

    10.
    Avoiding the use of solvents in synthesis can reduce environmental contamination and even be more convenient than using solvent-based synthesis. In this tutorial review we focus on recent research into the use of mechanochemistry (grinding) to synthesise metal complexes in the absence of solvent. We include synthesis of mononuclear complexes, coordination clusters, spacious coordination cages, and 1-, 2- and 3-dimensional coordination polymers (metal organic frameworks) which can even exhibit microporosity. Remarkably, in many cases, mechanochemical synthesis is actually faster and more convenient than the original solvent-based methods. Examples of solvent-free methods other than grinding are also briefly discussed, and the positive outlook for this growing topic is emphasised.  相似文献   

    11.
    Mechanochemistry: opportunities for new and cleaner synthesis   总被引:2,自引:0,他引:2  
    The aim of this critical review is to provide a broad but digestible overview of mechanochemical synthesis, i.e. reactions conducted by grinding solid reactants together with no or minimal solvent. Although mechanochemistry has historically been a sideline approach to synthesis it may soon move into the mainstream because it is increasingly apparent that it can be practical, and even advantageous, and because of the opportunities it provides for developing more sustainable methods. Concentrating on recent advances, this article covers industrial aspects, inorganic materials, organic synthesis, cocrystallisation, pharmaceutical aspects, metal complexes (including metal-organic frameworks), supramolecular aspects and characterization methods. The historical development, mechanistic aspects, limitations and opportunities are also discussed (314 references).  相似文献   

    12.
    Mechanochemical reactions effected by milling or grinding are an attractive means to conduct chemical reactions dependent on molecular recognition and to systematically explore different modes of molecular self-assembly. The natural relationship between milling mechanochemistry and supramolecular chemistry arises primarily from the ability to avoid bulk solvent, which simultaneously avoids limitations of solution-based chemistry, such as solubility, solvent complexation, or solvolysis, and makes the resulting process highly environmentally friendly. This tutorial review highlights the use of mechanochemistry for the synthesis of supramolecular targets in the solid state, such as molecular hydrogen- or halogen-bonded complexes, molecular and supramolecular cages, open frameworks and interlocked architectures. It is also demonstrated that the molecular self-assembly phenomena that are well-established in solution chemistry, such as reversible binding through covalent or non-covalent bonds, thermodynamic equilibration and structure templating, are also accessible in milling mechanochemistry through recently developed highly efficient methodologies such as liquid-assisted grinding (LAG) or ion- and liquid-assisted grinding (ILAG). Also highlighted are the new opportunities arising from the marriage of concepts of supramolecular and mechanochemical synthesis, including organocatalysis, deracemisation and discovery of new molecular recognition motifs.  相似文献   

    13.
    Studies on lanthanide and actinide halide complexes with neutral O- and/or N-donor ligands have intensified in recent years due to their implications in homogeneous catalysis, magnetic and optical materials, as synthons for the synthesis of novel coordination and organometallic compounds and, for Ln(II) halide complexes, as reducing agents in organic synthesis. Synthetic strategies, structural diversity as well as some important properties and reactivities of these anhydrous metal (including scandium and yttrium) halide complexes are reviewed here. These complexes also hold potential as starting materials for constructing more sophisticated heterometallic assemblies by crystal engineering; the compounds of this class, either discrete ion-pairs or coordination polymers, being discussed separately under the heading heterometallic lanthanide and actinide halide complexes. The aim of this article is to provide a reference text for the researchers working in the lanthanide and actinide coordination chemistry field and to identify and signify the area of future research.  相似文献   

    14.
    A general scheme for theoretical treatment of organometallic reactivity is proposed. It is based upon the notion that the reactivity of a molecule is strongly affected by its coordination to metal-containing fragments. Based upon this idea we describe the large-scale organometallic reactions as reactions of the ligands in the coordination spheres of transition metal complexes. We propose here a quantum mechanical framework for analysis of effects of coordination on the reactivity and give several examples of qualitative energy profiles for reactions in the ligand spheres of transition metal complexes. © 1996 John Wiley & Sons, Inc.  相似文献   

    15.
    Mechanochemistry offers an environmentally benign and facile synthesis method for a variety of cement paste constituents. In addition, these methods can be used to selectively tune the properties of cement components. The mineral ettringite is an important component of cementitious materials and has additional technological potential due to its ion exchange properties. Synthesis of ettringite via mechanochemistry is an environmentally friendly alternative to conventional wet-chemical synthesis established in industry. This contribution explores the mechanism of a two-step mechanochemical synthesis of ettringite, which was previously found to greatly improve the reaction conversion as compared with one-pot synthesis. The crystallinity of Al(OH)3 was found to decrease during the first stage of this mechanochemical synthesis. This was correlated to a significant decrease in the particle size of Al(OH)3 in this stage. No other significant changes were found for the other components, suggesting that mechanochemical activation of Al(OH)3 is responsible for the enhanced formation of ettringite by the two-step approach. The environmentally friendly approach developed for ettringite synthesis offers a versatile synthetic strategy, which can be applied to synthesise further cementitious materials.  相似文献   

    16.
    Mono and disubstituted ureas react with alkynyl Fischer carbene complexes to give mono and di N,N-substituted organometallic uracil analogues. An optimization of the process using different starting metal carbene complexes and variously substituted ureas under conventional heating (with and without solvent) and microwave irradiation techniques is reported. The synthesis of the metal-carbene analog of the commercially available dimethyl uracil is reported.  相似文献   

    17.
    The synthesis, characterization and catalytic properties of new materials obtained by reaction of organometallic complexes of groups IIb, IVa, and VIa with the surface of metallic particles are reviewed. Two types of materials may be obtained by surface organometallic chemistry on metals: metal particles covered with organometallic fragments, and bimetallic particles of predetermined composition. Characterization of the organometallic fragments on the metal particles has demonstrated their thermal stability. These particles covered with surface organometallic fragments are new catalytic materials, highly selective in several reactions such as the hydrogenation of α,β-unsaturated aldehydes, ethyl pyruvate, nitrobenzene, acrylonitrile, and olefins. The bimetallic particles without organometallic fragments are also highly active and selective for a variety of reactions such as hydrogenolysis of various alkanes and hydrogenolysis of esters. For these systems, the concept of “site isolation” has been advanced to account for the high selectivity of the reactions.  相似文献   

    18.
    王少芬  魏建谟 《分析化学》2001,29(6):725-730
    超临界流体色谱(SFC)在色谱分离过程中能在较低的温度下分析对热不稳定性的化合物,包括金属络合物和金属有机化合物。本文总结了近来文献报道的各种过渡金属、重金属、镧系和锕系以及铅、汞和锡的金属有机化合物的SFC分离,还讨论了SFC检测系统和金属有机化合物的溶解度的测定。  相似文献   

    19.
    Mechanical activation and mechanochemical reactions are the subjects of mechanochemistry, a special branch of chemistry studied intensively since the 19th century. Herein, we comparably describe two synthesis methods used to obtain the following layered double hydroxide doped with cerium, Mg3Al0.75Ce0.25(OH)8(CO3)0.5·2H2O: the mechanochemical route and the co-precipitation method, respectively. The influence of the preparation method on the physico-chemical properties as determined by multiple techniques such as XRD, SEM, EDS, XPS, DRIFT, RAMAN, DR-UV-VIS, basicity, acidity, real/bulk densities, and BET measurements was also analyzed. The obtained samples, abbreviated HTCe-PP (prepared by co-precipitation) and HTCe-MC (prepared by mechanochemical method), and their corresponding mixed oxides, Ce-PP (resulting from HTCe-PP) and Ce-MC (resulting from HTCe-MC), were used as base catalysts in the self-condensation reaction of cyclohexanone and two Claisen–Schmidt condensations, which involve the reaction between an aromatic aldehyde and a ketone, at different molar ratios to synthesize compounds with significant biologic activity from the flavonoid family, namely chalcone (1,3-diphenyl-2-propen-1-one) and flavone (2-phenyl-4H-1benzoxiran-4-one). The mechanochemical route was shown to have indisputable advantages over the co-precipitation method for both the catalytic activity of the solids and the costs.  相似文献   

    20.
    A review article is presented relating to the concept of valence-change in the mass spectra of metal-containing compounds. It is found that the modes of ion dissociation in these spectra are markedly dependent on the oxidation states normally assumed by the metal concerned and it is postulated that electron-transfer may be possible between the complexed metal atom and its ligands in the ion, such that the odd- or even-electron character of the ion is inter-changeable. Ion reactions such as the consecutive loss of two radicals are normally of low probability in the mass spectra of organic compounds, but are often observed in the mass spectra of metal-containing compounds and can be rationalized in terms of the valence-change concept. Convincing evidence for valence-change in some spectra is provided by the occurrence of reactions leading to the bare metal ion, or to the loss of neutral fragments containing the metal atom in a lower oxidation state than in the precursor molecule. Further applications of the concept may be found in the rationalization of the mass spectra of inorganic and organometallic compounds.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号