首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Isothermal three-phase equilibria of gas, aqueous, and hydrate phases for the {xenon (Xe) + cyclopropane (c-C3H6)} mixed-gas hydrate system were measured at two different temperatures (279.15 and 289.15) K. The structural phase transitions from structure-I to structure-II and back to structure-I, depending on the mole fraction of guest mixtures, occur in the (Xe + c-C3H6) mixed-gas hydrate system. The isothermal pressure–composition relations have two local pressure minima. The most important characteristic in the (Xe + c-C3H6) mixed-gas hydrate system is that the equilibrium pressure–composition relations exhibit the complex phase behavior involving two structural phase transitions and two homogeneous negative azeotropes. One of two structural phase transitions exhibits the heterogeneous azeotropic-like behavior.  相似文献   

2.
《Fluid Phase Equilibria》2006,245(2):134-139
The vapor-hydrate equilibria were studied experimentally in detail for CH4 + C2H4 + tetrahydrofuran (THF) + water systems in the temperature range of 273.15–282.15 K, pressure range of 2.0–4.5 MPa, the initial gas–liquid volume ratio range of 45–170 standard volumes of gas per volume of liquid and THF concentration range of 4–12 mol%. The results demonstrated that, because of the presence of THF, ethylene was remarkably enriched in vapor phase instead of being enriched in hydrate phase for CH4 + C2H4 + water system. This conclusion is of industrial significance; it implies that it is feasible to enrich ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

3.
This paper reports the measured hydrate phase equilibria of simulated flue gas (12.6 vol% CO2, 80.5 vol% N2, 6.9 vol% O2) in the presence of tetra-n-butyl ammonium bromide (TBAB) or tri-n-butylphosphine oxide (TBPO), at (0, 5 and 26) wt%, respectively. The measurements of the phase boundary between (hydrate + liquid + vapor) (H + L + V) phases and (liquid + vapor) (L + V) phases were performed within the temperature range (275.97 to 293.99) K and pressure range (1.56 to 18.78) MPa with using the isochoric step-heating pressure search method. It was found that addition of TBAB or TBPO allowed the incipient equilibrium hydrate formation conditions for the flue gas to become milder. Compared to TBAB, TBPO was largely more effective in reducing the phase equilibrium pressure.  相似文献   

4.
In the present work, the three- and four-phase hydrate equilibria of (carbon dioxide (CO2) + tetrahydrofuran (THF) + water) system are measured by using Cailletet equipment in the temperature and pressure range of (272 to 292) K and (1.0 to 7.5) MPa, respectively, at different CO2 concentration. Throughout the study, the concentration of THF is kept constant at 5 mol% in the aqueous solution. In addition, the fluid phase transitions of LW–LV–V  LW–LV (bubble point) and LW–LV–V  LW–V (dew point) are determined when they are present in the ternary system. For comparison, the three-phase hydrate equilibria of binary (CO2 + H2O) are also measured. Experimental measurements show that the addition of THF as a hydrate promoter extends hydrate stability region by elevating the hydrate equilibrium temperature at a specified pressure. The three-phase equilibrium line H–LW–V is found to be independent of the overall concentration of CO2. Contradictory, at higher pressure, the phase equilibria of the systems are significantly influenced by the overall concentration of CO2 in the systems. A liquid–liquid phase split is observed at overall concentration of CO2 as low as 3 mol% at elevated pressure. The region is bounded by the bubble-points line (LW–LV–V  LW–LV), dew points line (LW–LV–V  LW + V) and the four-phase equilibrium line (H + LW + LV + V). At higher overall concentration of CO2 in the ternary system, experimental measurements show that pseudo-retrograde behaviour exists at pressure between (2.5 and 5) MPa at temperature of 290.8 K.  相似文献   

5.
The three-phase equilibrium conditions of ternary (hydrogen + tert-butylamine + water) system were first measured under high-pressure in a “full view” sapphire cell. The tert-butylamine–hydrogen binary hydrate phase transition points were obtained through determining the points of intersection of three phases (H–Lw–V) to two phases (Lw–V) experimentally. Measurements were made using an isochoric method. Firstly, (tetrahydrofuran + hydrogen) binary hydrate phase equilibrium data were determined with this method and compared with the corresponding experimental data reported in the literatures and the acceptable agreements demonstrated the reliability of the experimental method used in this work. The experimental investigation on (tert-butylamine + hydrogen) binary hydrate phase equilibrium was then carried out within the temperature range of (268.4 to 274.7) K and in the pressure range of (9.54 to 29.95) MPa at (0.0556, 0.0886, 0.0975, and 0.13) mole fraction of tert-butylamine. The three-phase equilibrium curve (H + Lw + V) was found to be dependent on the concentration of tert-butylamine solution. Dissociation experimental results showed that tert-butylamine as a hydrate former shifted hydrate stability region to lower pressure and higher temperature.  相似文献   

6.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

7.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

8.
《Fluid Phase Equilibria》2006,242(2):111-117
The solubility of hydrogen in toluene in the presence of the compressed CO2 at the temperatures from 305 to 343 K and the pressures from 1.2 to 10.5 MPa was measured by using a continuous flow technique. The obtained data indicate that more hydrogen could be dissolved in toluene at the pressures higher than a certain value depending on temperature and the molar ratio of H2 to CO2 in gas. The Peng–Robinson equation of state associated with the van der Waals mixing rule were found to correlate the VLE data of the ternary system H2 + CO2 + toluene satisfactorily. From the volume expansion resulted from the dissolution of CO2 in toluene calculated by the proposed model, it was found that hydrogen solubility was generally increased with increasing volume expansion. A large volume expansion was required to enhance hydrogen solubility when the mole fraction of hydrogen in gas was low.  相似文献   

9.
The three-phase (vapour + liquid + solid) equilibrium conditions for semi-clathrates formed from three mixtures of (CO2 + N2), in aqueous solutions of tetra-butyl ammonium bromide (TBAB), were measured in an isochoric reactor. The experiments were conducted at temperatures between (281 and 290) K, at pressures between (1.9 and 5.9) MPa and in aqueous TBAB solutions of wTBAB = (0.05, 0.10, and 0.20). The experimental results obtained in this study were compared with previously obtained results for gas hydrates, formed from the same three mixtures of (CO2 + N2) and it was observed that semi-clathrates formed at a substantially lower pressure than did gas hydrates.  相似文献   

10.
The four-phase equilibrium conditions of (vapor + liquid + hydrate + ice) were measured in the system of (CO2 + 2,2-dimethylbutane + water). The measurements were performed within the temperature range (254.2 to 270.2) K and pressure range (0.490 to 0.847) MPa using an isochoric method. Phase equilibrium conditions of hydrate formed in this study were measured to be at higher temperatures and lower pressures than those of structure I CO2 simple hydrate. The largest difference in the equilibrium pressures of structure I CO2 hydrate and the hydrate formed in the present study was 0.057 MPa at T = 258.3 K. On the basis of the four-phase equilibrium data obtained, the quintuple point for the (ice + structure I hydrate + structure H hydrate + liquid + vapor) was also determined to be T = 266.4 K and 0.864 MPa. The results indicate that structure H hydrate formed with CO2 and 2,2-dimethylbutane is stable exclusively at the temperatures below the quintuple temperature.  相似文献   

11.
In this study the phase equilibrium behaviors of the binary system (CO2 + lauric acid) and the ternary system (CO2 + methanol + lauric acid) were determined. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (293 to 343) K and pressures up to 24 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.7524 to 0.9955) for the binary system (CO2 + lauric acid); (0.4616 to 0.9895) for the ternary system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (2:1); and (0.3414 to 0.9182) for the system (CO2 + methanol + lauric acid) with a methanol to lauric acid molar ratio of (6:1). For these systems (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid), and (solid + fluid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals mixing rule with a satisfactory correlation between experimental and calculated values.  相似文献   

12.
The paper reports the three-phase (gas + aqueous liquid + hydrate) equilibrium pressure (p) versus temperature (T) data for a (O3 + O2 + CO2 + H2O) system and, for comparison, corresponding data for a (O2 + CO2 + H2O) system for the first time. These data cover the temperature range from (272 to 279) K, corresponding to pressures up to 4 MPa, for each of the three different (O3 + O2)-to-CO2 or O2-to-CO2 mole ratios in the gas phase, which are approximately 1:9, 2:8, and 3:7, respectively. The mole fraction of ozone in the gas phase of the (O3 + O2 + CO2 + H2O) system was from ∼0.004 to ∼0.02. The modified pressure-search method, developed in our previous study [S. Muromachi, T. Nakajima, R. Ohmura, Y.H. Mori, Fluid Phase Equilib. 305 (2011) 145–151] for pT measurements in the presence of chemically unstable ozone, was applied, having been further modified for dealing with highly water-soluble CO2, for the (O3 + O2 + CO2 + H2O) system, while the conventional temperature-search method was used for the (O2 + CO2 + H2O) system. The measurement uncertainties (with 95% coverage) were ±0.11 K for T, ±6.0 kPa for p, and ±0.0015 for the mole fraction of each species in the gas phase. It was confirmed that, at a given CO2 fraction in the gas phase, p for the (O3 + O2 + CO2 + H2O) system was consistently lower than that for the (O2 + CO2 + H2O) system over the entire T range of the present measurements, indicating a preference of O3 to O2 in the uptake of guest-gas molecules into the cages of a structure I hydrate.  相似文献   

13.
The main objective of this work was to investigate the high pressure phase behavior of the binary systems {CO2(1) + methanol(2)} and {CO2(1) + soybean methyl esters (biodiesel)(2)} and the ternary system {CO2(1) + biodiesel(2) + methanol(3)} were determined. Biodiesel was produced from soybean oil, purified, characterized and used in this work. The static synthetic method, using a variable-volume view cell, was employed to obtain the experimental data in the temperature range of (303.15 to 343.15) K and pressures up to 21 MPa. The mole fractions of carbon dioxide were varied according to the systems as follows: (0.2383 to 0.8666) for the binary system {CO2(1) + methanol(2)}; (0.4201 to 0.9931) for the binary system {CO2(1) + biodiesel(2)}; (0.4864 to 0.9767) for the ternary system {CO2(1) + biodiesel(2) + methanol(3)} with a biodiesel to methanol molar ratio of (1:3); and (0.3732 to 0.9630) for the system {CO2 + biodiesel + methanol} with a biodiesel to methanol molar ratio of (8:1). For these systems, (vapor + liquid), (liquid + liquid), (vapor + liquid + liquid) transitions were observed. The phase equilibrium data obtained for the systems were modeled using the Peng–Robinson equation of state with the classical van der Waals (PR-vdW2) and Wong-Sandler (PR–WS) mixing rules. Both thermodynamic models were able to satisfactorily correlate the phase behavior of the systems investigated and the PR–WS presented the best performance.  相似文献   

14.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

15.
The bromide minerals solubility in the mixed system (m1NaBr + m2MgBr2)(aq) have been investigated at T = 323.15 K by the physico-chemical analysis method. The equilibrium crystallization of NaBr·2H2O(cr), NaBr(cr), and MgBr2·6H2O(cr) has been established. The solubility-measurements results obtained have been combined with all other experimental equilibrium solubility data available in literature at T = (273.15 and 298.15) K to construct a chemical model that calculates (solid + liquid) equilibria in the mixed system (m1NaBr + m2MgBr2)(aq). The solubility modeling approach based on fundamental Pitzer specific interaction equations is employed. The model gives a very good agreement with bromide salts equilibrium solubility data. Temperature extrapolation of the mixed system model provides reasonable mineral solubility at high temperature (up to 100 °C). This model expands the previously published temperature variable sodium–potassium–bromide and potassium–magnesium–bromide models by evaluating sodium–magnesium mixing parameters. The resulting model for quaternary system (Na + K + Mg + Br + H2O) is validated by comparing solubility predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solution models due to data insufficiencies at high temperature are discussed.  相似文献   

16.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

17.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases and relevant gaseous species of the (NaF + AlF3 + CaF2 + BeF2 + Al2O3 + BeO) system, and optimized model parameters have been found. The (NaF + AlF3 + CaF2 + Al2O3) subsystem, which is the base electrolyte used for the electro-reduction of alumina in Hall–Héroult cells, has been critically evaluated in a previous article. The Modified Quasichemical Model in the Quadruplet Approximation for short-range ordering was used for the molten salt phase. The thermodynamic database developed is a first step towards a quantitative study of the beryllium mass balance in an electrolysis cell. In particular, the predominant Be-containing species in the gas phase evolved at the anode were identified; and, for a given beryllium content of the alumina, the beryllium content of the electrolytic bath at steady state was assessed under several approximations.  相似文献   

18.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

19.
An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO2 + 1-propanol), (CO2 + 2-methyl-1-propanol), (CO2 + 3-methyl-1-butanol), and (CO2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.  相似文献   

20.
The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号