首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
孙立群  孔志宏 《大学数学》2007,23(1):161-165
主要指出了微分法与参数法的实质及二者的本质区别,以及求奇解的一个注意事项.  相似文献   

2.
In this paper, a fully discretized projection method is introduced. It contains a parameter operator. Depending on this operator, we can obtain a first-order scheme, which is appropriate for theoretical analysis, and a second-order scheme, which is more suitable for actual computations. In this method, the boundary conditions of the intermediate velocity field and pressure are not needed. We give the proof of the stability and convergence for the first-order case. For the higher order cases, the proof were different, and we will present it elsewhere.

In a forthcoming article [7], we apply this scheme to the driven-cavity problem and compare it with other schemes  相似文献   

3.
Two autonomous, nonlinear, third-order ordinary differential equations whose dynamics can be represented by second-order nonlinear ordinary differential equations for the first-order derivative of the solution are studied analytically and numerically. The analytical study includes both the obtention of closed-form solutions and the use of an artificial parameter method that provides approximations to both the solution and the frequency of oscillations. It is shown that both the analytical solution and the accuracy of the artificial parameter method depend greatly on the sign of the nonlinearities and the initial value of the first-order derivative.  相似文献   

4.
Abstract

We study the inverse problem of parameter identification in noncoercive variational problems that commonly appear in applied models. We examine the differentiability of the set-valued parameter-to-solution map using the first-order and the second-order contingent derivatives. We explore the inverse problem using the output least-squares and the modified output least-squares objectives. By regularizing the noncoercive variational problem, we obtain a single-valued regularized parameter-to-solution map and investigate its smoothness and boundedness. We also consider optimization problems using the output least-squares and the modified output least-squares objectives for the regularized variational problem. We give a complete convergence analysis showing that for the output least-squares and the modified output least-squares, the regularized minimization problems approximate the original optimization problems suitably. We also provide the first-order and the second-order adjoint method for the computation of the first-order and the second-order derivatives of the output least-squares objective. We provide discrete formulas for the gradient and the Hessian calculation and present numerical results.  相似文献   

5.
A modified couple stress theory and a meshless method is used to study the bending of simply supported micro isotropic plates according to the first-order shear deformation plate theory, also known as the Mindlin plate theory. The modified couples tress theory involves only one length scale parameter and thus simplifies the theory, since experimentally it is easier to determine the single scale parameter. The equations governing bending of the first-order shear deformation theory are implemented using a meshless method based on collocation with radial basis functions. The numerical method is easy to implement, and it provides accurate results that are in excellent agreement with the analytical solutions.  相似文献   

6.
We examine a singularly perturbed linear parabolic initial-boundary value problem in one space variable. Various finite difference schemes are derived for this problem using a semidiscrete Petrov—Galerkin finite element method. These schemes do not have a cell Reynolds number restriction and are shown to be first-order accurate, uniformly in the perturbation parameter. Numerical results are also presented.  相似文献   

7.
This study deals with the singularly perturbed initial value problem for a quasilinear first-order delay differential equation. A numerical method is generated on a grid that is constructed adaptively from a knowledge of the exact solution, which involves appropriate piecewise-uniform mesh on each time subinterval. An error analysis shows that the method is first order convergent except for a logarithmic factor, in the discrete maximum norm, independently of the perturbation parameter. The parameter uniform convergence is confirmed by numerical computations.  相似文献   

8.
We present a practical implementation of an optimal first-order method, due to Nesterov, for large-scale total variation regularization in tomographic reconstruction, image deblurring, etc. The algorithm applies to μ-strongly convex objective functions with L-Lipschitz continuous gradient. In the framework of Nesterov both μ and L are assumed known—an assumption that is seldom satisfied in practice. We propose to incorporate mechanisms to estimate locally sufficient μ and L during the iterations. The mechanisms also allow for the application to non-strongly convex functions. We discuss the convergence rate and iteration complexity of several first-order methods, including the proposed algorithm, and we use a 3D tomography problem to compare the performance of these methods. In numerical simulations we demonstrate the advantage in terms of faster convergence when estimating the strong convexity parameter μ for solving ill-conditioned problems to high accuracy, in comparison with an optimal method for non-strongly convex problems and a first-order method with Barzilai-Borwein step size selection.  相似文献   

9.
In this paper we study the asymptotic behavior of viscosity solutions for a functional partial differential equation with a small parameter as the parameter tends to zero. We study simultaneous effects of homogenization and penalization in functional first-order PDE. We establish a convergence theorem in which the limit equation is identified with some first order PDE.  相似文献   

10.
We introduce a novel approach for analyzing the worst-case performance of first-order black-box optimization methods. We focus on smooth unconstrained convex minimization over the Euclidean space. Our approach relies on the observation that by definition, the worst-case behavior of a black-box optimization method is by itself an optimization problem, which we call the performance estimation problem (PEP). We formulate and analyze the PEP for two classes of first-order algorithms. We first apply this approach on the classical gradient method and derive a new and tight analytical bound on its performance. We then consider a broader class of first-order black-box methods, which among others, include the so-called heavy-ball method and the fast gradient schemes. We show that for this broader class, it is possible to derive new bounds on the performance of these methods by solving an adequately relaxed convex semidefinite PEP. Finally, we show an efficient procedure for finding optimal step sizes which results in a first-order black-box method that achieves best worst-case performance.  相似文献   

11.
This paper deals with the singularly perturbed initial value problem for quasilinear first-order delay differential equation depending on a parameter. A numerical method is constructed for this problem which involves an appropriate piecewise-uniform meshes on each time subinterval. The difference scheme is shown to converge to the continuous solution uniformly with respect to the perturbation parameter. Some numerical experiments illustrate in practice the result of convergence proved theoretically.  相似文献   

12.
Based on the researches of Szydlowski and Krawiec, we studied the inherent complexity of a chaotic business cycle with great excitements in non-resonant condition. First, we got the first-order and second-order approximate solutions of the system by using multiple scale method. Then deduced the formulation reflecting the complex relations between vibration, phase, bifurcation parameter μ and excite frequency Ω of first-order solution. As the great excitement F varied, the global changes of the system solutions were analyzed. We also explored the different paths leading the systems with different parameter combinations into catastrophe region, fuzzy region or chaos region. Finally, we discussed the evolution trends of business cycle models under the above-mentioned conditions. Hence, this paper has some theoretical and practical significance.  相似文献   

13.
Considering the potential applications of the buckled structures as nanomechanical mass sensors, this paper presents an analytical method to solve the frequency shifts of the first-order transverse and longitudinal vibration modes when a mass attaches on the surface of a buckled nanoribbon based on the nonlocal elastic theory and the Lagrange's motion equation. The first-order transverse and longitudinal vibration modes of the buckled nanoribbon are introduced. A comparison between the analytic solution and the finite element analysis (FEA) is presented. Then, the effects of the compressive strain, the magnitude and location of attached mass, the nonlocal parameter, and attached mass numbers on the frequency shifts are presented. From example calculations, it is seen that the magnitude of attached mass increases the frequency shifts of the first-order modes, except the first-order transverse vibration mode at the location Z1=0. The frequency shifts for the first-order transverse and longitudinal vibration modes are different, and could be used as important principles in mass sensing. What's more, the compressive strain and the nonlocal parameter play significant roles on the sensing process of the buckled nanoribbon. The results could serve as useful references for the fabrications and applications of buckled structures based nanomechanical mass sensors.  相似文献   

14.
We prove the large deviation principle for the posterior distributions on the (unknown) parameter of a multivariate autoregressive process with i.i.d. Normal innovations. As a particular case, we recover a previous result for univariate first-order autoregressive processes. We also show that the rate function can be expressed in terms of the divergence between two spectral densities.  相似文献   

15.
We consider a defect-correction method that combines a first-order upwinded difference scheme with a second-order central difference scheme for a model singularly perturbed convection–diffusion problem in one dimension on a class of Shishkin-type meshes. The method is shown to be convergent, uniformly in the diffusion parameter , of second order in the discrete maximum norm. As a corollary we derive error bounds for the gradient approximation of the upwind scheme. Numerical experiments support our theoretical results.  相似文献   

16.
In this paper we study higher-order interior point algorithms, especially power-series algorithms, for solving linear programming problems. Since higher-order differentials are not parameter-invariant, it is important to choose a suitable parameter for a power-series algorithm. We propose a parameter transformation to obtain a good choice of parameter, called ak-parameter, for general truncated powerseries approximations. We give a method to find ak-parameter. This method is applied to two powerseries interior point algorithms, which are built on a primal—dual algorithm and a dual algorithm, respectively. Computational results indicate that these higher-order power-series algorithms accelerate convergence compared to first-order algorithms by reducing the number of iterations. Also they demonstrate the efficiency of thek-parameter transformation to amend an unsuitable parameter in power-series algorithms.Work supported in part by the DFG Schwerpunktprogramm Anwendungsbezogene Optimierung und Steuerung.  相似文献   

17.
First-order methods with momentum, such as Nesterov’s fast gradient method, are very useful for convex optimization problems, but can exhibit undesirable oscillations yielding slow convergence rates for some applications. An adaptive restarting scheme can improve the convergence rate of the fast gradient method, when the parameter of a strongly convex cost function is unknown or when the iterates of the algorithm enter a locally strongly convex region. Recently, we introduced the optimized gradient method, a first-order algorithm that has an inexpensive per-iteration computational cost similar to that of the fast gradient method, yet has a worst-case cost function rate that is twice faster than that of the fast gradient method and that is optimal for large-dimensional smooth convex problems. Building upon the success of accelerating the fast gradient method using adaptive restart, this paper investigates similar heuristic acceleration of the optimized gradient method. We first derive a new first-order method that resembles the optimized gradient method for strongly convex quadratic problems with known function parameters, yielding a linear convergence rate that is faster than that of the analogous version of the fast gradient method. We then provide a heuristic analysis and numerical experiments that illustrate that adaptive restart can accelerate the convergence of the optimized gradient method. Numerical results also illustrate that adaptive restart is helpful for a proximal version of the optimized gradient method for nonsmooth composite convex functions.  相似文献   

18.
This work is concerned with a class of PDE-constrained optimization problems that are motivated by an application in radiotherapy treatment planning. Here the primary design objective is to minimize the volume where a functional of the state violates a prescribed level, but prescribing these levels in the form of pointwise state constraints leads to infeasible problems. We therefore propose an alternative approach based on \(L^1\) penalization of the violation that is also applicable when state constraints are infeasible. We establish well-posedness of the corresponding optimal control problem, derive first-order optimality conditions, discuss convergence of minimizers as the penalty parameter tends to infinity, and present a semismooth Newton method for their efficient numerical solution. The performance of this method for a model problem is illustrated and contrasted with an alternative approach based on (regularized) state constraints.  相似文献   

19.
We propose new versions of accelerated first-order methods for convex composite optimization, where the prox parameter is allowed to increase from one iteration to the next. In particular, we show that a full backtracking strategy can be used within the FISTA and FALM algorithms while preserving their worst-case iteration complexities of $O(\sqrt{L(f)/\epsilon })$ . In the original versions of FISTA and FALM the prox parameter value on each iteration must be bounded from above by its value on prior iterations. The complexity of the algorithm then depends on the smallest value of the prox parameter encountered by the algorithm. The theoretical implications of using full backtracking in the framework of accelerated first-order and alternating linearization methods allow for better complexity estimates that depend on the “average” prox parameter value. Moreover, we show that in the case of compressed sensing problem and Lasso, the additional cost of the new backtracking strategy is negligible compared to the cost of the original FISTA iteration. Our computational results show the benefit of the new algorithm.  相似文献   

20.
We consider the Cauchy problem for the systems of the first-order ordinary differential equations with a small parameter E of degree q at the derivative. We study the possibility of solving this problem by means of the regularization method of the Lomov theory of singular perturbations. We show that, for q>1, an application of the procedure by Lomov leads only to the trivial solution to the problem in the class of resonance-free solutions. We suggest and describe a modification of the procedure which enables us to construct a nontrivial solution to the problem in the space of resonance-free solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号