首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscosity B-coefficients of mono-, di-, tri-saccharides and the derivatives (methyl glycosides) in mB = (0.5, 1.0, 2.0, and 3.0) mol · kg−1 aqueous solutions of magnesium chloride have been determined from viscosity data using the Jones–Dole equation at T = (288.15, 298.15, 308.15, and 318.15) K. The viscosity B-coefficients of transfer (ΔtB), the temperature derivatives of B-coefficients (dB/dT), pair and triplet viscometric interaction coefficients (ηAB, ηABB) have been determined. The viscosity B-coefficients data of systems studied in water have been reported earlier. The results have been interpreted in light of the solute–solute and solute–solvent interactions occurring in these systems. The comparison of results has been made with those reported in the presence of potassium chloride, ammonium sulphate, and sodium sulphate.  相似文献   

2.
Viscosity of nine aqueous Ni(NO3)2 solutions (0.050, 0.153, 0.218, 0.288, 0.608, 0.951, 1.368, 1.824, and 2.246) mol · kg−1 was measured in the temperature range from (297 to 475) K and at pressures (0.1, 10, 20, and 30) MPa. The measurements were carried out with a capillary flow technique. The total experimental uncertainty of viscosity, pressure, temperature, and composition measurements were estimated to be less than 1.6%, 0.05%, 15 mK, and 0.02%, respectively. All experimental and derived results are compared with experimental and calculated values reported in the literature. Extrapolation of the solution viscosity measurements to zero concentration (pure water values) for the given temperature and pressure are in excellent agreement (average absolute deviation, AAD = 0.13%) with the values of pure water viscosity from IAPWS formulation [J. Kestin, J.V. Sengers, B. Kamgar-Parsi, J.M.H. Levelt Sengers, J. Phys. Chem. Ref. Data 13 (1984) 175–189]. The viscosity data for the solutions as a function of concentration have been interpreted in terms of the extended Jones–Dole equation for strong electrolytes. The values of viscosity A-, B-, and D-coefficients of the extended Jones–Dole equation for the relative viscosity (η/η0) of aqueous Ni(NO3)2 solutions as a function of temperature are studied. The derived values of the viscosity A- and B-coefficients were compared with the results predicted by Falkenhagen–Dole theory (limiting law) of electrolyte solutions and the values calculated with the ionic B-coefficient data. The measured values of viscosity for the solutions were also used to calculate the effective rigid molar volumes in the extended Einstein relation for the relative viscosity (η/η0).  相似文献   

3.
The Jones–Dole viscosity B-coefficients for various mono-, di-, and tri-saccharides in water and in (0.5, 1.0, 2.0, and 3.0) mol · kg?1 aqueous solutions of sodium acetate have been determined at different temperatures, T = (288.15, 298.15, 308.15, and 318.15) K from viscosity data. Densities used to determine viscosities have been reported earlier. The viscosity B-coefficients of transfer, ΔtB, has been estimated for the transfer of saccharides from water to aqueous sodium acetate solutions. The positive ΔtB values were obtained in all cases and their magnitudes increase with the increase in concentration of sodium acetate. Pair, ηAB and higher order, ηABB viscometric interaction coefficients (using McMillan–Mayer theory), and dB/dT coefficients have also been determined. Activation Gibbs free energies and other related thermodynamic activation parameters of viscous flow have been determined using Feakin’s transition-state theory. These parameters have been discussed in terms of solute–solute and solute–solvent interactions occurring in these solutions.  相似文献   

4.
The viscosities, η of mono-, di-, tri-saccharides and methylglycosides, viz., d(+)-xylose (XYL), d(?)-arabinose (ARA), d(?)-ribose (RIB), d(?)-fructose (FRU), d(+)-galactose (GAL), d(+)-mannose (MAN), d(+)-glucose (GLU), d(+)-melibiose (MEL), d(+)-cellobiose (CEL), d(+)-lactose monohydrate (LAC), d(+)-maltose monohydrate (MAL), d(+)-trehalose dihydrate (TRE), sucrose (SUC), d(+)-raffinose pentahydrate (RAF), α-methyl-d(+)-glucoside (α-Me-GLU), methyl-α-d-xylopyranoside (Me-α-XYL), and methyl-β-d-xylopyranoside (Me-β-XYL) in water and in (0.5, 1.0, 2.0, and 3.0) mol · kg?1 aqueous solutions of potassium chloride (KCl) have been determined at T = (288.15, 298.15, 308.15, and 318.15) K from efflux time measurements by using a capillary viscometer. Densities used to determine viscosities have been reported earlier. The viscosity data have been utilized to determine the viscosity B-coefficients employing the Jones–Dole equation at different temperatures. From these data, the viscosity B-coefficients of transfer, ΔtB have been estimated for the transfer of various saccharides/methylglycosides from water to aqueous potassium chloride solutions. The ΔtB values have been found to be positive, whose magnitude increases with the increase in concentration of potassium chloride in all cases. The dB/dT coefficients, pair, ηAB and triplet, ηABB viscometric interaction coefficients have also been determined. Gibbs free energies of activation and related thermodynamic parameters of activation of viscous flow have been determined employing Feakin’s transition-state theory. The signs and magnitudes of various parameters have been discussed in terms of solute–solute and solute–solvent interactions occurring in these solutions. The effect of substitution of –OH by methoxy group, –OCH3 has also been discussed.  相似文献   

5.
Density, sound velocity, and viscosity of 1-ethyl-3-methylimidazolium bromide, [Emim][Br], in aqueous solutions of tri-potassium phosphate with salt weight fractions (ws = 0.00, 0.10, 0.15, and 0.20) have been measured as a function of concentration of [Emim][Br] at atmospheric pressure and T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. The apparent molar volume, isentropic compressibility, apparent isentropic compressibility, and relative viscosity values have been evaluated from the experimental data. The partial molar volume and isentropic compressibility at infinite dilution, and viscosity B-coefficient obtained from these data have been used to calculate the corresponding transfer parameters for the studied IL from water to the aqueous tri-potassium phosphate solutions. Also, an empirical equation was satisfactorily used to correlate the experimental viscosity data.  相似文献   

6.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaNO3 + KNO3 + Na2SO4 + K2SO4) ternary reciprocal system, and optimised model parameters have been found. The model parameters obtained for the four binary common-ion subsystems (i.e. (NaNO3 + Na2SO4), (KNO3 + K2SO4), (NaNO3 + KNO3) and (Na2SO4 + K2SO4)) are used to predict thermodynamic properties and phase equilibria for the entire system. The Modified Quasichemical Model in the Quadruplet Approximation for short-range ordering was used for the molten salt phase, and the Compound Energy Formalism was used for the various solid solutions.  相似文献   

7.
Densities (ρ) and viscosities (η) of aqueous 1-methylpiperazine (1-MPZ) solutions are reported at T = (298.15 to 343.15) K. Refractive indices (nD) are reported at T = (293.15 to 333.15) K, and surface tensions (γ) are reported at T = (298.15 to 333.15) K. Derived excess properties, except excess viscosities (Δη), are found to be negative over the entire composition range. The addition of 1-MPZ reduces drastically the surface tension of water. The temperature dependence of surface tensions is explained in terms of surface entropy (SS) and enthalpy (HS). The measured and derived properties are used to probe the microscopic liquid structure of the bulk and surface of the aqueous amine solutions.  相似文献   

8.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

9.
A high voltage symmetric carbon/carbon supercapacitor was built using a Na2SO4 aqueous solution. This system exhibits an excellent cycle life during thousands of cycles up to voltage values as high as 1.6 V. Three-electrode investigations show a particularly high potential window, ΔE = 2 V, for the considered activated carbon in Na2SO4. However, in a two-electrode cell, when the voltage is higher than 1.6 V, the potential of the positive electrode is beyond the oxidation potential of water, and AC is oxidized. These results demonstrate the potentialities of Na2SO4 for developing high energy density systems.  相似文献   

10.
Metastable equilibrium solubilities and properties such as densities, conductivity, pH, refractive index, and viscosity of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram was plotted. In the phase diagram, there are three invariant points, seven univariant curves, five fields of crystallization: Li2SO4 · H2O, K2SO4, Li2B4O7 · 3H2O, K2B4O7 · 4H2O, and K2SO4 · Li2SO4. The double salt K2SO4 · Li2SO4 was found in the quaternary system metastable equilibria. Lithium sulfate (Li2SO4) has the highest concentration and strong salting-out effects on other salts.Also, the relationship diagram between the properties and the ion concentration of solution was constructed. It can be seen from the relationship diagram that the equilibrium solution density values, viscosity values, and refractive index values are increased apparently with the rise of sulfate ion concentration, reaching the maximum values at eutonic point F3. Electrical conductivity values and pH values, however, fall down with the rise of ion concentration on the whole.  相似文献   

11.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

12.
Taylor dispersion technique was used for measuring mutual diffusion coefficients of sodium alginate aqueous solutions at T = 298.15 K, by using as carrier stream solution both pure water and solutions of this polyelectrolyte at a slightly different concentration. The limiting values found at infinitesimal ionic strength, D0, were determined by extrapolating to c  0. These studies were complemented by molecular mechanics calculations. From the experimental data, it was possible to estimate both the limiting conductivity and the tracer diffusion coefficient values for the alginate anion, and the hydrodynamic radius of the sodium alginate (NaC6H7O6), as well as to discuss the influence of the kinetic, thermodynamic and viscosity factors on the diffusion of sodium alginate in aqueous solutions at finite concentrations. Thus, the aim of our innovative research is to contribute to a better understanding of the structure and the thermodynamic behavior of these polymeric systems in solution and supplying the scientific and technological communities with data on these important parameters in solution transport processes.  相似文献   

13.
The solubility and the density in the aqueous ternary system (Li2SO4 + MgSO4 + H2O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li2SO4 · H2O + MgSO4 · 7H2O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li2SO4 · H2O) and epsomite (MgSO4 · 7H2O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.  相似文献   

14.
This paper describes a chemical model that calculates (solid + liquid) equilibria in the {m1FeCl2 + m2FeCl3}(aq), {m1FeSO4 + m2Fe2(SO4)3}(aq), {m1NaCl + m2FeCl3}(aq), {m1Na2SO4 + m2FeSO4}(aq), {m1NaCl + m2FeCl2}(aq), {m1KCl + m2FeCl3}(aq), {m1K2SO4 + m2Fe2(SO4)3}(aq), {m1KCl + m2FeCl2}(aq), {m1K2SO4 + m2FeSO4}(aq), and {m1MgCl2 + m2FeCl2}(aq) systems, where m denotes molality at T=298.15 K. The Pitzer ion-interaction model has been used for thermodynamic analysis of the experimental activity data in binary FeCl2(aq) and FeCl3(aq) solutions, and ternary solubility data, presented in the literature. The thermodynamic functions needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherms have been plotted. The mixed solution model parameters {θ(MN) and ψ(MNX)} have been chosen on the basis of the compositions of saturated ternary solutions and data on the pure water solubility of the K2SO4 · FeSO4 · 6H2O double salt. The standard chemical potentials of four ferrous {FeCl2 · 4H2O, Na2SO4 · FeSO4 · 4H2O, K2SO4 · FeSO4 · 6H2O, and MgCl2 · FeCl2 · 8H2O} and three ferric {FeCl3 · 6H2O, 2KCl · FeCl3 · H2O, and 2K2SO4 · Fe2(SO4)3 · 14H2O} solid phases have been determined. Comparison of solubility predictions with experimental data not used in model parameterization is given. The component activities of the saturated {m1MgSO4 + m2FeSO4}(aq) and in the mixed crystalline phase were determined and the change of the molar Gibbs free energy of mixing ΔmixGm(s) of crystals was determined as a function of the solid phase composition. It is established that at T=298.15 K the mixed (Mg,Fe)SO4 · 7H2O and (Fe,Mg)SO4 · 7H2O crystals show small positive deviations from the ideal mixed crystals. Limitations of the {Fe(II) + Fe(III)} model due to data insufficiencies are discussed.  相似文献   

15.
Densities, ρ, and viscosities, η, of aqueous solutions of N-(2-hydroxyethyl)morpholine were measured over the entire composition range at T = (293.15, 303.15, 313.15, 323.15, 333.15) K and at atmospheric pressure. The excess molar volumes VE and viscosity deviations ηE of aqueous solutions were calculated from the experimental results of density and viscosity measurements and fitted to the Redlich–Kister polynomial equation. Apparent molar volumes V?, partial molar volume at infinite dilution V, and the thermal expansion coefficient α were also calculated. The VE values were found to be negative over the entire composition range at all temperatures studied and become less negative with increasing temperature, whereas the viscosity data ηE exhibited positive deviations from ideal behaviour.  相似文献   

16.
Density, speed of sound and viscosity measurements of binary aqueous solutions of tri-potassium citrate were performed from dilute up to near saturated concentration range at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. Volumetric and transport properties of ternary aqueous solutions of (tri-potassium citrate + KCl) have also been measured within the molality range of KCl (0.05, 0.15, 0.25, 0.35, 0.45, and 0.55) at different temperatures. Apparent molar volume and apparent molar isentropic compressibility have been calculated from the density and speed of sound for binary and ternary aqueous solutions of tri-potassium citrate. Apparent molar volume and apparent molar isentropic compressibility of ternary aqueous solutions of (tri-potassium citrate + KCl) have been correlated with the Redlich–Mayer equation. Viscosity values of ternary aqueous solutions of (tri-potassium citrate + KCl) have been fitted with the Jones–Dole equation. The results obtained have been interpreted in elucidating the effect of tri-potassium citrate on the interaction of KCl–H2O. Density and viscosity values of ternary aqueous solutions of (tri-potassium citrate + KCl) have been predicted successfully using the methods proposed by Laliberte (2007), Laliberte and Cooper (2004) [9], [10] and Zafarani-Moattar and Majdan-Cegincara (2009) [11].  相似文献   

17.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

18.
The previous isopiestic investigations of HTcO4 aqueous solutions at T = 298.15 K are believed to be unreliable, because of the formation of a ternary mixture at high molality. Consequently, published isopiestic molalities for aqueous HTcO4 solutions at T = 298.15 K were completed and corrected. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for pertechnetic acid HTcO4 were determined by direct water activity measurements. These measurements extend from molality m = 1.4 mol · kg−1 to m = 8.32 mol · kg−1. The variation of the osmotic coefficient of this acid in water is represented mathematically. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scale. The density law leads to the partial molar volume variations for aqueous HTcO4 solutions at T = 298.15 K, which are compared with published data.  相似文献   

19.
We determined apparent molar volumes V? at 298.15 ? (T/K) ? 368.15 and apparent molar heat capacities Cp,? at 298.15 ? (T/K) ? 393.15 for aqueous solutions of HIO3 at molalities m from (0.015 to 1.0) mol · kg?1, and of aqueous KIO3 at molalities m from (0.01 to 0.2) mol · kg?1 at p = 0.35 MPa. We also determined V? at the same p and at 298.15 ? (T/K) ? 368.15 for aqueous solutions of KI at m from (0.015 to 7.5) mol · kg?1. We determined Cp,? at the same p and at 298.15 ? (T/K) ? 393.15 for aqueous solutions of KI at m from (0.015 to 5.5) mol · kg?1, and for aqueous solutions of NaIO3 at m from (0.02 to 0.15) mol · kg?1. Values of V? were determined from densities measured with a vibrating-tube densimeter, and values of Cp,? were determined with a twin fixed-cell, differential temperature-scanning calorimeter. Empirical functions of m and T were fitted to our results for each compound. Values of Ka, ΔrHm, and ΔrCp,m for the proton ionization reaction of aqueous HIO3 are calculated and discussed.  相似文献   

20.
Densities, ρ speeds of sound, u and dynamic viscosities, η of the ternary mixtures {dimethyl carbonate (DMC) + methanol + ethanol} and (dimethyl carbonate + methanol + hexane) were gathered at T = (293.15, 298.15, 308.15, and 313.15) K. From experimental data viscosity deviations, Δη of the ternary mixtures were evaluated. These results have been correlated using the Cibulka equation. The fitting parameters and the standard deviations of the ternary viscosity deviations are given. UNIFAC-VISCO group contribution method was used to predict the dynamic viscosities of the ternary mixtures at several temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号