首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The shear viscosity eta(s), mutual diffusion coefficient D, and ultrasonic attenuation spectra of the nitroethane-cyclohexane mixture of critical composition have been measured at various temperatures near the critical temperature T(c). The relaxation rate of order parameter fluctuations resulting from a combined evaluation of the eta(s) and D data follows power law behavior with the theoretical exponent and with the large amplitude Gamma(o)=(156+/-2)x10(9) s(-1). The ultrasonic spectra have been evaluated in terms of a critical contribution and a noncritical background contribution. The amplitude of the former exhibits a temperature dependence, in conformity with a temperature dependence in the adiabatic coupling constant (|g| = 0.064 near T(c) and 0.1 at T-T(c)=3 K). If the variation of the critical amplitude with T is taken into account the experimental attenuation coefficient data display a scaling function which nicely fits to the theoretical prediction from the Bhattacharjee-Ferrell dynamic scaling model [R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. A 31, 1788 (1985)].  相似文献   

2.
Shear viscosity and dynamic light scattering measurements as well as ultrasonic spectrometry studies of the nitroethane/3-methylpentane mixture of critical composition have been performed at various temperatures near the critical temperature, T(c). A combined evaluation of the shear viscosity and mutual diffusion coefficient data yielded the amplitude, xi(0), of the fluctuation correlation length, xi, assumed to follow power law, and the relaxation rate, Gamma, or order parameter fluctuations. The latter was found to follow power law with the theoretical universal exponent. The amplitudes xi(0) = 0.23 +/- 0.02 nm and Gamma(0) = (125 +/- 5) x 10(9) s(-1) nicely agree with literature values. Using the relaxation rates resulting from the viscosity and diffusion coefficient data, the scaling function has been calculated assuming the ultrasonic spectra to be composed of a critical part and a noncritical background contribution. The experimental scaling function fits well to the predictions of the Bhattacharjee-Ferrell dynamic scaling model with scaled half-attenuation frequency, Omega(BF)1/2= 2.1. The amplitude of the sonic spectra yields the amount |g| = 0.26 of the adiabatic coupling constant, g, in fair agreement with -0.29 from another thermodynamic relation.  相似文献   

3.
Ultrasonic attenuation spectra, the shear viscosity, and the mutual diffusion coefficient of the n-pentanol-nitromethane mixture of critical composition have been measured at different temperatures near the critical temperature. The noncritical background contribution, proportional to frequency, to the acoustical attenuation-per-wavelength spectra has been determined and subtracted from the total attenuation to yield the critical contribution. When plotted versus the reduced frequency, with the relaxation rate of order-parameter fluctuations from the shear viscosity and diffusion coefficient measurements, the critical part in the sonic attenuation coefficient displays a scaling function which nicely fits to the data for the critical system 3-methylpentane-nitromethane and also to the empirical scaling function of the Bhattacharjee-Ferrell dynamic scaling theory. The scaled half-attenuation frequency follows from the experimental data as Omega(1/2)emp= 1.8+/-0.1. The relaxation rate of order-parameter fluctuation shows power-law behavior with the theoretically predicted universal exponent and the extraordinary high amplitude Gammao= (187+/-2) x 10(9) s(-1). The amount of the adiabatic coupling constant /g/= 0.03, as estimated from the amplitude of the critical contribution to the acoustical spectra, is unusually small.  相似文献   

4.
Using the equal volume criterion and also the pseudospinodal conception the critical demixing point of the triethylene glycol monoheptyl ether/water system (C7E3H2O) has been determined as Ycrit=0.1 and Tcrit=296.46 K (Y, mass fraction of surfactant). From density measurements the critical micelle concentration (cmc) followed as Ycmc=0.007 at 288.15 K and Ycmc=0.0066 at 298.15 K. The (static) shear viscosity etas and the mutual diffusion coefficient D of the C7E3H2O mixture of critical composition have been evaluated to yield their singular and background parts. From a combined treatment of both quantities the relaxation rate Gamma of order parameter fluctuations has been derived. Gamma follows power law with universal critical exponent and amplitude Gamma0=3.1 x 10(9) s(-1). Broadband ultrasonic spectra of C7E3H2O mixtures exhibit a noncritical relaxation, reflecting the monomer exchange between micelles and the suspending phase, and a critical term due to concentration fluctuations. The former is subject to a relaxation time distribution that broadens when approaching the critical temperature. The latter can be well represented with the aid of the dynamic scaling model by Bhattacharjee and Ferrell (BF) [Phys. Rev. A. 31, 1788 (1985)]. The half-attenuation frequency in the scaling function of the latter model is noticeably smaller (Omega12 (BF) approximately 1) than the theoretically predicted value Omega12 (BF)=2.1. This result has been taken as an indication of a coupling between the fluctuations in the local concentration and the kinetics of micelle formation, in correspondence with the idea of a fluctuation controlled monomer exchange [T. Telgmann and U. Kaatze, Langmuir 18, 3068 (2002)].  相似文献   

5.
Ultrasonic attenuation spectra of the nitrobenzene-n-hexane mixture of critical composition have been analysed. Data between 50 kHz and 1 GHz from different sources have been included to show that at a given temperature the spectra, in addition to the critical contribution, reveal a non-critical relaxation term. Taking this additional term into account inconsistencies in the scaling function reported in the literature are avoided. In the final analysis the scaling function of the nitrobenzene-n-hexane system follows the predictions of the Bhattacharjee-Ferrell theory with critical amplitude and relaxation rate of concentration fluctuations in nice agreement with determinations from independent methods. The low-frequency attenuation data are briefly discussed with a view to a bulk viscosity approach which yields a slightly different proportionality constant in the linear regime of the scaling function than the Bhattacharjee-Ferrell theory. Evidence in favour of the latter is obtained.  相似文献   

6.
Potassium hydrogenocarbonate KDCO3 presents an order/disorder phase transition at Tc approximately 353 K. The critical behavior of this phase transition was studied by single crystal 2H and 39K NMR. The evolution of the order parameter as a function of temperature is quantified, and the critical exponent was determined, indicating a transition close to a tricritical point. The 2H Zeeman relaxation rate is strongly increased near the transition temperature. By calculating the noncritical contribution to the Zeeman relaxation rate, we show that the observed relaxation rate clearly presents a pseudo-divergent behavior near Tc, with a logarithmic singularity. The nature of the phase transition is discussed in the light of these results.  相似文献   

7.
8.
Superpositioning of relaxation data as a function of the product variable TV(γ), where T is temperature, V the specific volume, and γ a material constant, is an experimental fact demonstrated for approximately 100 liquids and polymers. Such scaling behavior would result from the intermolecular potential having the form of an inverse power law (IPL), suggesting that an IPL is a good approximation for certain relaxation properties over the relevant range of intermolecular distances. However, the derivation of the scaling property of an IPL liquid is based on reduced quantities, for example, the reduced relaxation time equal to T(1∕2V - 1∕3) times the actual relaxation time. The difference between scaling using reduced rather than unreduced units is negligible in the supercooled regime; however, at higher temperature the difference can be substantial, accounting for the purported breakdown of the scaling and giving rise to different values of the scaling exponent. Only the γ obtained using reduced quantities can be sensibly related to the intermolecular potential.  相似文献   

9.
For solutions of four saccharides in water with alkaline-earth chlorides added ultrasonic attenuation spectra between 100 kHz and 2 GHz are reported and compared to those for carbohydrate solutions without salt. Calcium chloride does not alter the relaxation times in the spectra of D-glucose and D+-maltose solutions, reflecting the exocyclic hydroxymethyl group rotation, a saccharide-saccharide association, and, with the disaccharide, also motions of both rings of a molecule relative to one another. The spectra of D-xylose and D-fructose solutions are substantially changed by the salts. With both saccharides an additional term with relaxation time around some nanoseconds exists which is assigned to a rearrangement of a carbohydrate-cation complex. Other relaxation terms of these saccharide solutions are also subject to noticeable changes by the salt, indicating specific carbohydrate-cation interactions. The ultrasonic spectra show that such interactions may exist also with carbohydrates which do not display the particular hydroxyl group sequences that are considered to promote complexation with cations.  相似文献   

10.
This work describes the dielectric properties of piezoelectric poly(vinylidene fluoride) (PVDF) thin films in the frequency and temperature ranges relevant for usual applications. We measured the isothermal dielectric relaxation spectra of commercial piezoelectric PVDF thin films between 10 Hz to 10 MHz, at several temperatures from 278 K to 308 K. Measurements were made for samples in mechanically free and clamped conditions, in the direction of the poling field (perpendicular to the film). We found that the imaginary part of the dielectric relaxation spectra of free and clamped PVDF samples is dominated by a peak, above 100 kHz, that can be characterized by a Havriliak-Negami function. The characteristic time follows an Arrhenius dependence on temperature. Moreover, the spectra of the free PVDF samples show two additional peaks at low frequencies which are associated with mechanical relaxation processes. Our results are important for the characterization of piezoelectric PVDF, particularly after the stretching and poling processes in thin films, and for the design and characterization of a broad range of ultrasonic transducers.  相似文献   

11.
Molecular dynamics (MD) simulations of the glass-former 2Ca(NO(3))(2·3KNO(3), CKN, were performed as a function of temperature at pressures 0.1 MPa, 0.5 GPa, 1.0 GPa, and 2.0 GPa. Diffusion coefficient, relaxation time of the intermediate scattering function, and anion reorientational time were obtained as a function of temperature and densitiy ρ. These dynamical properties of CKN scale as ρ(γ)∕T with a common value γ = 1.8 ± 0.1. The scaling parameter γ is consistent with the exponent of the repulsive part of an effective intermolecular potential for the repulsion between the atoms at shortest distance in the equilibrium structure of liquid CKN, Ca(2+), and oxygen atoms of NO(3)(-). Correlation between potential energy and virial is obeyed for the short-range terms of the potential function, but not for the whole potential including coulombic interactions. Decoupling of diffusion coefficient and reorientational relaxation time from relaxation time take place at a given ρ(γ)∕T value, i.e., breakdown of Stokes-Einstein and Debye-Stokes-Einstein equations result from combined thermal and volume effects. The MD results agree with correlations proposed between long-time relaxation and short-time dynamics, lnτ ∝ 1∕, where the mean square displacement concerns a time window of 10.0 ps. It has been found that scales as ρ(γ)∕T above and below the glass transition temperature, so that thermodynamic scaling of liquid dynamics can be thought as a consequence of theories relating short- and long-time dynamics, and the more fundamental scaling concerns short-time dynamical properties.  相似文献   

12.
The susceptibility spectra of ten molecular glass formers are completely interpolated by an extension of the generalized gamma distribution of correlation times. The data cover at least 15 decades in frequency and the interpolation includes both alpha peak and excess wing. It is shown that the line shape parameters and the time constant of the alpha relaxation are related to each other. Master curves are identified by a scaling procedure that involves only three parameters, namely, the glass transition temperature T(g), the fragility m, and the excess wing exponent at T(g). This holds independent of whether a further secondary relaxation peak is present or not. Above a crossover temperature T(x) this unique evolution of the line shape parameters breaks down, and a crossover to a simple peak susceptibility without excess wing is observed. Here, the frequency-temperature superposition principle holds in good approximation up to temperatures well above the melting point. It turns out that the crossover coincides with the temperature at which the low-temperature Vogel-Fulcher law starts to fail upon heating. Thus, the so-called Stickel temperature gets a more physical meaning as it marks a qualitative change in the evolution of the susceptibility spectra of glass formers. Moreover, the interrelation of the line shape parameters can explain why the "Nagel scaling" works in some approximation. Our study demonstrates that the excess wing in molecular glass formers is a secondary relaxation, which is linked to the alpha process in a unique way.  相似文献   

13.
The dielectric relaxation data of Ishida et al. on a number of acrylic polymers are represented in terms of the relaxation function proposed by Havriliak and Negami using the multi-response techniques developed by Havriliak and Watts. Two of the parameters of this function are interpreted in terms of a temperature dependent distribution of relaxation times. In this method of interpretation the breadth of the distribution function is temperature-dependent while the skewness is not. The temperature dependence of the breadth of the distribution function is similar for most of these acrylic polymers.The parameters of the relaxation function are also interpreted in terms of Mansfield's model which represents intra- and inter-molecular interactions in terms of springs and dash pots. Briefly, increasing the side chain length for the methacrylate series increases the inter-molecular relaxation time which may be due to an increase in the entropy of activation for the orientation process. The difference between the one acrylate in this study and the four methacrylates of the series is a reduction in the intra-molecular relaxation time, apparently due to the lack of the alpha methyl group.  相似文献   

14.
Isothermal enthalpy relaxation in polystyrene was measured as a function of temperature and molecular weight on a differential scanning calorimeter. Relaxation spectra were derived from the data and expressed as a distribution of relaxation times. For a given molecular weight the relaxation spectra at different temperatures could not be superimposed by a shift in time. The relaxation curves of samples of different molecular weights could be superimposed only when the difference between the temperature at which the relaxation was monitored (Ta) and their respective Tg was the same. The relaxation spectrum at any temperature for a given molecular weight was also expressed as a distribution of energies. The average energy represented by this distribution was associated with an activation energy required for the motion of a chemical repeat unit. The activation energy extracted from the temperature shift in the relaxation spectra corresponded to the motion of a statistical unit (Kuhn's segment) in polystyrene.  相似文献   

15.
We suggest a universal plot that superposes linear viscoelastic data of nearly monodisperse polymers on a single curve, regardless of the molecular weight, temperature, and species of polymers. The plotting method is based on the time–temperature superposition and rescaling of viscoelastic functions with terminal behavior. Without any information from molecular theories, the plot supports the fact that the molecular theories of the linear viscoelasticity of monodisperse polymers are independent of the species of polymers. Although an appropriate scaling may show universality by separately extracting the reptational mode and the Rouse mode from the whole set of viscoelastic data, our plotting method shows universality in a unified manner that scales the viscoelastic functions measured over the whole frequency range. We explain the origin of the universality of the plot in terms of molecular theory, the phenomenological spectra of the relaxation time (the BSW and CW spectra), and the principle of time–temperature superposition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2730–2737, 2004  相似文献   

16.
The authors have reported the electrical conductivity and the conductivity relaxation in mixed alkali tellurite glasses of compositions of 70TeO2-xNa2O-(30-x)Li2O in the frequency range from 10 Hz to 2 MHz and in the temperature range from room temperature to just below the glass transition temperature. They have analyzed the relaxation data in the framework of different models. They have observed the mixed alkali effect in the dc and ac conductivities, the crossover frequency, and the conductivity relaxation frequency as well as in their respective activation energies in these glasses. They have also observed the mixed alkali effect in the decoupling index. The scaling property of the modulus spectra of these mixed alkali glasses shows that the conductivity relaxation in the mixed alkali tellurite glasses is independent of temperature but depends on the glass compositions.  相似文献   

17.
We report ultrasonic attenuation and velocity measurements on poly(dimethylsiloxane) (PDMS), poly(phenylmethyl siloxane) (PPMS), and copolymer poly(dimethyl phenylmethyl siloxane) in the temperature range of 10–50°C and frequency 0.3–45 MHz. The present data complement previously reported Brillouin spectra at hypersonic frequencies. Whereas the ultrasonic velocity u0 is virtually independent of frequency, the ultrasonic absorption exhibits strong dispersion which can be ascribed to the viscoelastic normal mode relaxation. The ultrasonic attenuation data for PPMS at low temperatures display an additional relaxation process related to localized segmental motion. This mode is also responsible for the relatively large dispersion of the sound velocity and attenuation in the gigahertz frequency range accessible to the Brillouin scattering experiment. The extended information, which can be extracted by studying hypersonic dispersion, is discussed in detail.  相似文献   

18.
Dielectric relaxation times are often interpreted in terms of the reorientation of dipolar species or aggregates. The relevant time correlation function contains, however, cross terms between dipole moments of different particles. In the static case, these cross terms are accounted for by the Kirkwood factor g(K). Theories and molecular dynamics simulations suggest that such cross correlations may also affect the time-dependent properties, as reflected in the dielectric spectra. We present an experimental method for detecting effects of such cross correlations in dielectric spectra by a comparative analysis of dielectric and magnetic relaxation data. We demonstrate that such collective contributions can substantially affect dielectric relaxation. Experiments for n-pentanol (g(K)=3.06 at 298 K) and 2,2-dimethyl-3-ethyl-pentane-3-ol (g(K)=0.59) and their solutions in carbon tetrachloride show that in systems with g(K)>1, the cross correlations slow down dielectric relaxation. In systems with g(K)<1, dielectric relaxation is enhanced. The results conform to theoretical predictions by Madden and Kivelson [Adv. Chem. Phys. 56, 467 (1984)] and to results of molecular dynamics simulations. The relaxation enhancement by cross terms in the case of g(K)<1 is difficult to rationalize by conventional models of dielectric relaxation.  相似文献   

19.
At frequencies between 100 kHz and 400 MHz, ultrasonic attenuation spectra are measured at 25 °C for aqueous solutions of hexyl‐, heptyl‐, octyl‐, nonyl‐, and decyl‐β‐D ‐maltopyranoside as well as of decyl‐α‐D ‐maltopyranoside. The spectra with surfactant concentration c above the relevant critical micelle concentration (cmc) display three relaxation terms with discrete relaxation times. That with a relaxation time between 0.1 and 1.2 μs is due to exchange of monomers between micelles and the suspending phase. It is discussed in the light of the Teubner–Kahlweit–Aniansson–Wall model of the formation/decay kinetics of systems with Gaussian size distribution of micelles. The relaxation parameters are compared to those for solutions of other non‐ionic surfactants, such as alkyl monoglycosides and poly(ethylene glycol) monoalkyl ethers. At c<cmc this low‐frequency relaxation term is missing and at c≈cmc it is broadened, as is characteristic of solutions of oligomeric molecular structures rather than proper micelles. The relaxation terms with relaxation times between 6 and 15 ns and 0.7 and 2.3 ns reveal head‐group rotations around glycosidic angles and isomerization of the exocyclic hydroxymethyl group, respectively. These unimolecular reactions are also examined with a view to solutions of alkyl monoglycosides as well as of glucose and maltose.  相似文献   

20.
The ultrasonic absorption coefficient has been measured as a function of frequency between 5 MHz and 3.1 GHz for aqueous solutions of polyacrylic acid and of its sodium, potassium, and tetraethylammonium salts. Unlike an aqueous solution of propionic acid, all polymer solutions clearly exhibit excess absorption. Within the frequency range under consideration the excess absorption spectra can be analytically represented by two Debye-type relaxation terms. At 25°C the corresponding relaxation times adopt values between 3 and 12.4 ns, and between 0.12 and 0.22ns, respectively. The former process is discussed in accordance with previous models. The relaxation of the polyacrylic acid solutions is assumed to be related to the formation of hydrogen bonds of the polymeric molecules and that of the polyacrylate solutions may be due to interactions of counterions with chain segments. The latter process, the existence of which has been first proven in this study, is likely to reflect rotational motions of carboxyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号