首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of a discrete-time Ricardo–Malthus model obtained by numerical discretization is investigated, where the step size δ is regarded as a bifurcation parameter. It is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of $R^{2}_{+}$ by using the theory of center manifold and normal form. Numerical simulations are presented not only to illustrate our theoretical results, but also to exhibit the system’s complex dynamical behavior, such as the cascade of period-doubling bifurcation in orbits of period 2, 4, 8 16, period-11, 22, 28 orbits, quasiperiodic orbits, and the chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors.  相似文献   

2.
In this paper, a small Hopfield neural network with three neurons is studied, in which one of the three neurons is considered to be exposed to electromagnetic radiation. The effect of electromagnetic radiation is modeled and considered as magnetic flux across membrane of the neuron, which contributes to the formation of membrane potential, and a feedback with a memristive type is used to describe coupling between magnetic flux and membrane potential. With the electromagnetic radiation being considered, the previous steady neural network can present abundant chaotic dynamics. It is found that hidden attractors can be observed in the neural network under different conditions. Moreover, periodic motion and chaotic motion appear intermittently with variations in some system parameters. Particularly, coexistence of periodic attractor, quasiperiodic attractor, and chaotic strange attractor, coexistence of bifurcation modes and transient chaos can be observed. In addition, an electric circuit of the neural network is implemented in Pspice, and the experimental results agree well with the numerical ones.  相似文献   

3.
The concept of symmetric bifurcation for a symmetric wheel-rail system is defined. After that, the time response of the system can be achieved by the numerical integration method, and an unfixed and dynamic Poincaré section and its symmetric section for the symmetric wheel-rail system are established. Then the ??resultant bifurcation diagram?? method is constructed. The method is used to study the symmetric/asymmetric bifurcation behaviors and chaotic motions of a two-axle railway bogie running on an ideal straight and perfect track, and a variety of characteristics and dynamic processes can be obtained in the results. It is indicated that, for the possible sub-critical Hopf bifurcation in the railway bogie system, the stable stationary solutions and the stable periodic solutions coexist. When the speed is in the speed range of Hopf bifurcation point and saddle-node bifurcation point, the coexistence of multiple solutions can cause the oscillating amplitude change for different kinds of disturbance. Furthermore, it is found that there are symmetric motions for lower speeds, and then the system passes to the asymmetric ones for wide ranges of the speed, and returns again to the symmetric motions with narrow speed ranges. The rule of symmetry breaking in the system is through a blue sky catastrophe in the beginning.  相似文献   

4.
In this paper, we study the Hopf bifurcation for the four-dimensional competitive Lotka–Volterra system, and give an example which can display chaotic dynamics apparent like Rössler’s folded band attractor. This demonstrates that Smale’s conclusions in (J. Math. Biol., 3:5–7, 1976) are true even for the simplest competitive Lotka–Volterra systems when the dimension n is four. We explore the mechanism of occurrence of chaotic behavior for the four-dimensional competitive Lotka–Volterra system. The numerical study indicates that a periodic solution by Hopf bifurcation can undergo successive period-doubling cascades, and a homoclinic orbit can undergo homoclinic bifurcation by Shil’nikov theorem.  相似文献   

5.
多时间尺度问题具有广泛的工程与科学研究背景,慢变参数则是多时间尺度问题的典型标志之一.然而现有文献所报道的慢变参数问题,其展现出的振荡形式及内部分岔结构,大多较为单一,此外少有文献涉及到混沌激变的现象.本文以含慢变周期激励的达芬映射为例,探讨了一类具有复杂分岔结构的张弛振荡.快子系统的分岔表现为S形不动点曲线,其上、下稳定支可经由倍周期分岔通向混沌.而在一定的参数条件下,存在着导致混沌吸引子突然消失的一对临界参数值.当分岔参数达到此临界值时,混沌吸引子可能与不稳定不动点相接触,也可能与之相距一定距离.对快子系统吸引域分布的模拟,表明存在着导致边界激变(boundary crisis)的临界值,在这些值附近,经由延迟倍周期分岔演化而来的混沌吸引子可与2n(n=0,1,2,…)周期轨道乃至混沌吸引子共存.当慢变量周期地穿过临界点后,双稳态的消失导致原本处于混沌轨道的轨线对称地向此前共存的吸引子转迁,从而使系统出现了不同吸引子之间的滞后行为,由此产生了由边界激变所诱发的多种对称式张弛振荡.本文的结果丰富了对离散系统的多时间尺度动力学机理的认识.  相似文献   

6.
An asymmetric nonlinear oscillator representative of the finite forced dynamics of a structural system with initial curvature is used as a model system to show how the combined use of numerical and geometrical analysis allows deep insight into bifurcation phenomena and chaotic behaviour in the light of the system global dynamics.Numerical techniques are used to calculate fixed points of the response and bifurcation diagrams, to identify chaotic attractors, and to obtain basins of attraction of coexisting solutions. Geometrical analysis in control-phase portraits of the invariant manifolds of the direct and inverse saddles corresponding to unstable periodic motions is performed systematically in order to understand the global attractor structure and the attractor and basin bifurcations.  相似文献   

7.
We design a piezoaeroelastic energy harvester consisting of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. We choose the linear springs to produce the minimum flutter speed and then implement a linear velocity feedback to reduce the flutter speed to any desired value and hence produce limit-cycle oscillations at low wind speeds. Then, we use the center-manifold theorem to derive the normal form of the Hopf bifurcation near the flutter onset, which, in turn, is used to choose the nonlinear spring coefficients that produce supercritical Hopf bifurcations and increase the amplitudes of the ensuing limit cycles and hence the harvested power. For given gains and hence reduced flutter speeds, the harvested power is observed to increase, achieve a maximum, and then decrease as the wind speed increases. Furthermore, the response undergoes a secondary supercritical Hopf bifurcation, resulting in either a quasiperiodic motion or a periodic motion with a large period. As the wind speed is increased further, the response becomes eventually chaotic. These complex responses may result in a reduction in the generated power. To overcome this adverse effect, we propose to adjust the gains to increase the flutter speed and hence push the secondary Hopf bifurcation to higher wind speeds.  相似文献   

8.
In this paper, the effect of impulsive perturbation on enzyme kinetics is investigated. The impulsive perturbation is affected by introducing periodic constant input. The dynamical behavior of system is simulated and bifurcation diagrams are obtained. The results show that impulsive perturbation can easily give rise to complex dynamics, which includes: quasi-periodic oscillation, periodic doubling cascade, periodic halving cascade, attractor crisis and chaotic bands with periodic windows.  相似文献   

9.
The railway bogie, the most important running component, has direct association with the dynamic performance of the whole vehicle system. The bifurcation type of the bogie that is affected by vehicle parameters will decide the behavior of the vehicle hunting stability. This paper mainly analyzes the effect of the yaw damper and wheel tread shape on the stability and bifurcation type of the railway bogie. The center manifold theorem is adopted to reduce the dimension of the bogie dynamical model, and the symbolic expression for determining the bifurcation type at the critical speed is obtained by the method of normal form. As a result, the influence of yaw damper on the bifurcation type of the bogie is given qualitatively in contrast to typical wheel profiles with high and low wheel tread effective conicities. Besides, the discriminant of bifurcation type for the wheel tread parameter variation is given which depicts the variation tendency of dynamics characteristics. Finally, numerical analysis is given to exhibit corresponding bifurcation diagrams.  相似文献   

10.
In this paper, the dynamics of a two-dimensional discrete Hindmarsh–Rose model is discussed. It is shown that the system undergoes flip bifurcation, Neimark–Sacker bifurcation, and 1:1 resonance by using a center manifold theorem and bifurcation theory. Furthermore, we present the numerical simulations not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, including orbits of period 3, 6, 15, cascades of period-doubling bifurcation in orbits of period 2, 4, 8, 16, quasiperiodic orbits, and chaotic sets. These results obtained in this paper show far richer dynamics of the discrete Hindmarsh–Rose model compared with the corresponding continuous model.  相似文献   

11.
This paper details the research of the Cournot–Bertrand duopoly model with the application of nonlinear dynamics theory. We analyze the stability of the fixed points by numerical simulation; from the result we found that there exists only one Nash equilibrium point. To recognize the chaotic behavior of the system, we give the bifurcation diagram and Lyapunov exponent spectrum along with the corresponding chaotic attractor. Our study finds that either the change of output modification speed or the change of price modification speed will cause the market to the chaotic state which is disadvantageous for both of the firms. The introduction of chaos control strategies can bring the market back to orderly competition. We exert control on the system with the application of the state feedback method and the parameter variation control method. The conclusion has great significance in theory innovation and practice.  相似文献   

12.
The phenomenon of the chaotic boundary crisis and the related concept of the chaotic destroyer saddle has become recently a new problem in the studies of the destruction of chaotic attractors in nonlinear oscillators. As it is known, in the case of regular boundary crisis, the homoclinic bifurcation of the destroyer saddle defines the parameters of the annihilation of the chaotic attractor. In contrast, at the chaotic boundary crisis, the outset of the destroyer saddle which branches away from the chaotic attractor is tangled prior to the crisis. In our paper, the main point of interest is the problem of a relation, if any, between the homoclinic tangling of the destroyer saddle and the other properties of the system which may accompany the chaotic as well as the regular boundary crisis. In particular, the question if the phenomena of fractal basin boundary, indeterminate outcome, and a period of the destroyer saddle, are directly implied by the structure of the destroyer saddle invariant manifolds, is examined for some examples of the boundary crisis that occur in the mathematical models of the twin-well and the single-well potential nonlinear oscillators.  相似文献   

13.
In this paper we present the results of a bifurcation study of the weak electrolyte model for nematic electroconvection, for values of the parameters including experimentally measured values of the nematic I52. The linear stability analysis shows the existence of primary bifurcations of Hopf type, involving normal as well as oblique rolls. The weakly nonlinear analysis is performed using four globally coupled complex Ginzburg–Landau equations for the waves' envelopes. If spatial variations are ignored, these equations reduce to the normal form for a Hopf bifurcation with O(2)×O(2) symmetry. A rich variety of stable waves, as well as more complex spatiotemporal dynamics is predicted at onset. A temporal period doubling route to spatiotemporal chaos, corresponding to a period doubling cascade towards a chaotic attractor in the normal form, is identified. Eckhaus stability boundaries for travelling waves are also determined. The methods developed in this paper provide a systematic investigation of nonlinear physical mechanisms generating the patterns observed experimentally, and can be generalized to any two-dimensional anisotropic systems with translational and reflectional symmetry.  相似文献   

14.
This paper presents a three-dimensional autonomous Lorenz-like system formed by only five terms with a butterfly chaotic attractor. The dynamics of this new system is completely different from that in the Lorenz system family. This new chaotic system can display different dynamic behaviors such as periodic orbits, intermittency and chaos, which are numerically verified through investigating phase trajectories, Lyapunov exponents, bifurcation diagrams and Poincaré sections. Furthermore, this new system with compound structures is also proved by the presence of Hopf bifurcation at the equilibria and the crisis-induced intermittency.  相似文献   

15.
In this work, a new three-dimensional autonomous chaotic system has been introduced by modifying a hybrid optical system. The single quadratic nonlinearity is replaced by a single cubic nonlinearity; the new system can display two 1-scroll chaotic attractors simultaneously or one 2-scroll chaotic attractor. The bifurcation diagram is obtained and Lyapunov spectrum is calculated for the proposed system. The results show that the new system exhibits rich complexity features such as stable, periodic, and chaotic dynamics.  相似文献   

16.
We consider the well-known Sprott A system, which depends on a single real parameter a and, for \(a=1\), was shown to present a hidden chaotic attractor. We study the formation of hidden chaotic attractors as well as the formation of nested invariant tori in this system, performing a bifurcation analysis by varying the parameter a. We prove that, for \(a=0\), the Sprott A system has a line of equilibria in the z-axis, the phase space is foliated by concentric invariant spheres with two equilibrium points located at the south and north poles, and each one of these spheres is filled by heteroclinic orbits of south pole–north pole type. For \(a\ne 0\), the spheres are no longer invariant algebraic surfaces and the heteroclinic orbits are destroyed. We do a detailed numerical study for \(a>0\) small, showing that small nested invariant tori and a limit set, which encompasses these tori and is the \(\alpha \)- and \(\omega \)-limit set of almost all orbits in the phase space, are formed in a neighborhood of the origin. As the parameter a increases, this limit set evolves into a hidden chaotic attractor, which coexists with the nested invariant tori. In particular, we find hidden chaotic attractors for \(a<1\). Furthermore, we make a global analysis of Sprott A system, including the dynamics at infinity via the Poincaré compactification, showing that for \(a>0\), the only orbit which escapes to infinity is the one contained in the z-axis and all other orbits are either homoclinic to a limit set (or to a hidden chaotic attractor, depending on the value of a), or contained on an invariant torus, depending on the initial condition considered.  相似文献   

17.
Conservative chaotic systems are rare, especially autonomous smooth dynamical systems. This paper reports two four-dimensional (4D) autonomous conservative systems. The conservation of these two systems has been verified using the trace of Jacobian matrix, perpetual point theory and Hamiltonian energy theory. Numerical analyses, including phase portrait, Poincaré section, Lyapunov exponent spectrum and bifurcation diagram, verify the existence of the chaotic and quasiperiodic flows. Moreover, a electronic circuit in Multisim is built to demonstrate their chaotic dynamics, whose circuit experimental results agree well with the numerical results.  相似文献   

18.
In this part, the last in a three-part study, the three-dimensional (3-D) dynamics of a cantilevered pipe conveying fluid is explored when an additional “point” mass is attached at the free end. For a typical case, the dynamical behaviour of this system is presented in the form of a bifurcation diagram, along with the time traces, phase-plane plots, PSD plots and Poincaré maps, showing planar periodic, quasiperiodic and chaotic oscillations, followed by 3-D quasiperiodic and chaotic motions. The effect on the results of the number of beam modes used in the Galerkin solution scheme is studied in some detail. The theoretical results are then compared with the results of a set of experiments done previously and good qualitative and quantitative agreement is observed.  相似文献   

19.
Nonlinear differential equations of the fifth order, which govern the oscillations of the human vocal cords, are analyzed. A combined numerical technique is used to observe the regular and irregular solutions of these equations. A scenario from periodic, via quasiperiodic to chaotic attractor is demonstrated. A perturbation of the strange chaotic attractor to principal, combination and primary resonances is also discussed and illustrated.  相似文献   

20.
冯进钤  徐伟 《力学学报》2013,45(1):30-36
基于图胞映射理论, 提出了一种擦边流形的数值逼近方法, 研究了典型Du ng 碰撞振动系统中擦边诱导激变的全局动力学. 研究表明, 周期轨的擦边导致的奇异性使得系统同时产生1 个周期鞍和1 个混沌鞍. 当该周期鞍的稳定流形与不稳定流形发生相切时, 边界激变发生使得该混沌鞍演化为混沌吸引子. 噪声可以诱导周期吸引子发生擦边, 这种擦边导致了1 种内部激变的发生, 表现为该周期吸引子与其吸引盆内部的混沌鞍发生碰撞后演变为1 个混沌吸引子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号