首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chiral ferrocenylphosphine ligand, 2,2′-bis[1-N,N-dimethylamino)ethyl]-1,1′-bis(diphenylphosphino)ferrocene (2), which has C2 symmetry and a functional group on the side chain, was prepared by ortho-lithiation and phosphination of 1,1′-bis[1-N,N-dimethylamino)ethyl]ferrocene followed by optical resolution; recrystallization of the diammonium salt with tartaric acid. An X-ray diffraction study of PdCl2[(+)-2] showed that the complex has square-planar geometry with two cis chlorine and two phosphorus atoms and ligand (+)-2 has an (S) configuration on the 1-dimethylaminoethyl side chain and (R) ferrocene planar chirality.  相似文献   

2.
The crystal and molecular structures of 2′-amino-6′-dibutylamino-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (1), 2′-amino-6′-(N-cyclohexyl-N-methylamino)-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (2) and 2′-(2-chlorophenyl)amino-6′-dibutylaminospiro[isobenzofuran-1(3H), 9′[9H]xanthen-3-one (3) have been determined by single-crystal X-ray diffraction analysis. Atom-atom non-bonded potential energy and semiempirical quantum chemical calculations have been performed. The xanthene rings of 1 to 3 are slightly bent and the phthalide rings are planar. The phthalide ring moieties are almost perpendicular (88.9(1)−93.5(5)°) to the xanthene rings. The bond lengths C(6)---O(2) are apparently extended from the normal C(sp3)---O (lactone) length. The temperature factors for one butyl group C(32)---C(35)) of 1 increase gradually toward the terminal carbon. The temperature factors for C(30)---C(33) of 2 indicate large vibrations and these are reflected in short bond lengths. Two butyl groups of 3 are disordered and these C---C bond lengths are short and long alternately. Atomic net charges around spirocarbon C(6) and toward N(1) to C(6) indicate the weak alternative system in the colorless form. As the xanthene ring has a planar geometry, the π electron density migration will easily occur from the auxochromes attached to the phthalide ring to the xanthene ring.  相似文献   

3.
The crystal and molecular structures of 2′-amino-6′-dibutylamino-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (1), 2′-amino-6′-(N-cyclohexyl-N-methylamino)-3′-methylspiro[isobenzofuran-1(3H), 9′[9H]xanthen]-3-one (2) and 2′-(2-chlorophenyl)amino-6′-dibutylaminospiro[isobenzofuran-1(3H), 9′[9H]xanthen-3-one (3) have been determined by single-crystal X-ray diffraction analysis. Atom-atom non-bonded potential energy and semiempirical quantum chemical calculations have been performed. The xanthene rings of 1 to 3 are slightly bent and the phthalide rings are planar. The phthalide ring moieties are almost perpendicular (88.9(1)–93.5(5)°) to the xanthene rings. The bond lengths C(6)---O(2) are apparently extended from the normal C(sp3---O (lactone) length. The temperature factors for one butyl group C(32)---C(35)) of 1 increase gradually toward the terminal carbon. The temperature factors for C(30)---C(33) of 2 indicate large vibrations and these are reflected in short bond lengths. Two butyl groups of 3 are disordered and these C---C bond lengths are short and long alternately. Atomic net charges around spirocarbon C(6) and toward N(1) to C(6) indicate the weak alternative system in the colorless form. As the xanthene ring has a planar geometry, the π electron density migration will easily occur from the auxochromes attached to the phthalide ring to the xanthene ring.  相似文献   

4.
The crystal and molecular structure of the N-(4-chloro)benzoyl-N′-(4-tolyl)thiourea (C15H13N2OSCl, Mr=304.79) is determined by X-ray diffraction. The crystal structure is monoclinic, space group: P21/n, a=16.097(6), b=4.5989(2), c=19.388(7) Å and β=89.299(6)° V=1434.7(9)Å3, Z=4. FTIR and NMR spectra have been characterized. The interactions of intramolecular and intermolecular hydrogen bonds have been discussed. Density functional theory (DFT) (B3LYP) methods have been used to determine the structure and energies of stable conformers. Minimum energy conformations are calculated as a function of the torsion angle θ (C13–N1–C14–N2) varied every 30°. The optimized geometry corresponding to crystal structure is the most stable conformation. This has partly been attributed to intramolecular hydrogen bonds. With the basis sets of the 6-311G* quality, the DFT calculated bond parameters and harmonic vibrations are predicted in a very good agreement with experimental data.  相似文献   

5.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

6.
Infrared and Raman spectra of 1,1-(methylphosphinylidene) bis(methanamine) [mpbm, (CH3)PO(CH2NH2)2] and its N,N′-coordinated Pt(II) and Pd(II) have been studied in the 4000–200 cm−1 frequency range. Ab initio calculations have been carried out for different conformations of the mpbm at HF/6-31G* level of the theory from which structural parameters, conformational stability and predicted infrared and Raman spectra have been obtained. A complete vibrational assignment of the lowest energy conformer, tttg, as well as of its N,N′-coordinated Pt(II) and Pd(II) chloro-complexes was done on the basis of the calculated frequencies, relative infrared intensities, Raman activities and potential energy distribution (PED). The theoretical predictions are compared with the experimental results where appropriate.  相似文献   

7.
N-2-(4-picolyl)-N′-2-chlorophenylthiourea, 4PicTu2Cl, monoclinic, P21/c, a=10.068(5), b=11.715(2), β=96.88(4)°, and Z=4; N-2-(6-picolyl)-N′-2-chlorophenylthiourea, 6PicTu2Cl, triclinic, P-1, a=7.4250(8), b=7.5690(16), c=12.664(3) Å, =105.706(17), β=103.181(13), γ=90.063(13)°, V=665.6(2) Å3 and Z=2 and N-2-(6-picolyl)-N′-2-bromophenylthiourea, 6PicTu2Br, triclinic, P-1, a=7.512(4), b=7.535(6), c=12.575(4) Å, a=103.14(3), β=105.67(3), γ=90.28(4)°, V=665.7(2) Å3 and Z=2. The intramolecular hydrogen bonding between N′H and the pyridine nitrogen and intermolecular hydrogen bonding involving the thione sulfur and the NH hydrogen, as well as the planarity of the molecules, are affected by the position of the methyl substituent on the pyridine ring. The enthalpies of fusion and melting points of these thioureas are also affected. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in their spectra.  相似文献   

8.
Tetra-2,3-pyridinoporphyrazines and the corresponding water-soluble N,N′,N′′,N′′′-tetramethyl-tetra-2,3-pyridinoporphyrazine complexes, containing central metal atoms; M=Ge, Sn, Si and Zn, were synthesized and their photochemical properties were investigated. The reductive quenching of pyridinoporphyrazines excited states, enhanced relative to phthalocyanines, was considered as the first photochemical step of dyes phototransformation in dimethylformamide (DMF) and dimethylsulfoxide (DMSO) solutions under irradiation with visible light. Efficiency of singlet oxygen photosensitization decreases significantly in the row phthalocyanines, unquaternized, quaternized tetra-2,3-pyridinoporphyrazine metallocomplexes.  相似文献   

9.
The catalytic properties of a series of Fe(II) diimine complexes (diimine=N,N′-o-phenylenebis(salicylideneaminato), N,N′-ethylenebis(salicylideneaminato), N,N′-o-phenylenebisbenzal, N,N′-ethylenebisbenzal) in combination with ethylaluminoxane (EAO) for ethylene oligomerization have been investigated. Treatment of the iron(II) complexes with EAO in toluene generates active catalytic systems in situ that oligomerize ethylene to low-carbon olefins. The effects of reaction temperature, ratios of Al/Fe and reaction periods on catalytic activity and product distribution have been studied. The activity of complex FeCl2(PhCH=o-NC6H4N=CHPh) with EAO at 200°C is 1.35×105 g oligomers/mol Fe·h, and the selectivity of C4–10 olefins is 84.8%.  相似文献   

10.
The synthesis, spectral and photoelectrochemical studies of mixed ligand complexes of [Ru(dcbpy)2(LL)]Cl2, where LL=2,4-(1,3-N,N′-dimethyl)pteridinedione (DMP), 6,7-dimethyl-2,4-(1,3-N,N′-dimethyl)pteridinedione (MDMP), 6,7-diphenyl-2,4-(1,3-N,N′-dimethyl)pteridinedione (PhDMP), dibenzo[h,j]-(1,3-N,N′-dimethyl)isoalloxazine (BIAlo), 6,7-bis(pyrid-2-yl)-2,4-(1,3-N,N′-dimethyl) pteridinedione (PyDMP) were carried out. These complexes were attached to sol–gel processed TiO2 electrodes and the photocells fabricated were illuminated with polychromatic radiation in the presence of I2/I3 as redox electrolyte. The incident photon to current conversion efficiency determined was found to be 20–48%.  相似文献   

11.
The dipole moment and polarizability changes have been determined from electroabsorption (EA) spectroscopy of solid films of fac tris(2-(phenyl)pyridinato,N,C2′)iridium (III) [Ir(ppy)3]. The maximum changes in the dipole moment |Δμ|S=(5.0±0.5) D/f (f is the local field correction factor: 1.3–1.7) accompany ground state to the lowest singlet, and |Δμ|T=(1.7±0.5) D/f ground state to the lowest triplet metal-to-ligand charge transfer (MLCT) excited states formation, while the average polarizability change Å3/f2 follows from the fitting procedure throughout the visible absorption spectrum range. The experimental values of |Δμ| as well as energy positions of the MLCT states correlate with the literature results of time-dependent density functional theory.  相似文献   

12.
The photolysis of 2,2′-dinitrodiphenylmethylbenzoates (1a–1d) in 2-propanol gives dibenzo-[c, f]-[1,2]diazepin-11-one-oxides (5a–5d) as the major product. Dibenzo[c, f]-[1,2]diazepin-11-ones (2a–2d), 2,2′-dinitrobenzophenones (3a–3d), 2-amino-2′-nitrobenzophenones (4a–4d) and N-hydroxyacridones (6a–6d) are also formed in the reaction. When the irradiation is carried out in benzene, 3-(2′-nitrophenyl)-2,1-benzisoxazoles (7a–7d) are also obtained together with the above products.  相似文献   

13.
The new ligands (E)-4-[2-(4-(N-methyl-N-hexadecylaminophenyl)ethenyl]pyridine (L1) and 4′-(C6H4-p-N(Me)(hexadecyl))-2,2′:6′,2″-terpyridine (L2) were prepared along with their complexes [cis-Ir(CO)2ClL1], [fac-Os(CO)3Cl2L1], [ZnCl2L2] and [IrCl3L2]. Whereas these complexes show a large second-order nonlinear optical (NLO) response at the molecular level, similar to that of related organic alkylated salts as evidenced by the Electric Field Induced Second-Harmonic (EFISH) generation technique, their Langmuir–Blodgett (LB) film susceptibility is lower than that of the salts.  相似文献   

14.
Based on structural data of lipid A from Chlamydia trachomatis strains, chemically pure tetra- and pentaacyl 1,4′-bisphosphoryl as well as the related 4′-monophosphoryl derivatives of lipid A were synthesized. (R)-3-Hydroxyicosanoic acid as a chiral constituent was prepared via Noyori-reduction of methyl-3-oxoicosanoic acid. Synthetic intermediates were O-acylated with myristoic acid residues at positions 3 and 3′ and N-acylated with (R)-3-hydroxyicosanoic acid at both glucosamine units. Efficient purification methods for highly hydrophobic long-chain tri-, tetra- and pentaacyl progenitors of lipid A have been developed. Purity and homogeneity of the synthetic target compounds were confirmed by NMR and MS-data as well as a sensitive immunostaining approach. The tetra- and pentaacyl species serve as biomedical probes to investigate the endotoxic potential of chlamydial lipid A and to clarify its role in Chlamydia associated infections.  相似文献   

15.
The chiral bis-imine (1R,2R)-C6H10-[E---N=CH---C6H3---3,4-(OMe)2]2 1 (LH) reacts with [Pd(OAc)2] (1:1 molar ratio; OAc=acetate) giving the orthometallated [Pd(OAc)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)-C6H10---N=CH---C6H3-3′,4′-(OMe)2-κ-C,N,N)] 2 (abbreviated as [Pd(OAc)(L-κ-C,N,N)]), through C---H bond activation on only one of the aryl rings and N,N-coordination of the two iminic N atoms. 2 reacts with an excess of LiCl to give [Pd(Cl)(L-κ-C,N,N)] 3. The reaction of 3 with AgClO4 and neutral or anionic ligands L′ (1:1:1 molar ratio) affords [Pd(L-κ-C,N,N)(L′)](ClO4) (L′=PPh3 4a, NCMe 5, pyridine 6, p-nitroaniline 7) or [Pd(I)(L-κ-C,N,N)] 8. Complex 4a reacts with wet CDCl3 giving [Pd(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)(PPh3)](ClO4) 4b as a result of the hydrolysis of the C=N bond not involved in the orthometallated ring. The molecular structure of 4b·CH2Cl2 has been determined by X-ray diffraction methods. Cleavage of the Pd---N bond trans to the Caryl atom can be accomplished by coordination of strongly chelating ligands, such as acetylacetonate (acac) or bis(diphenylphosphino)ethane (dppe), forming [Pd(acac-O,O′)(L-κ-C,N)] 9 and [Pd(L-κ-C,N)(dppe-P,P′)](ClO4) 12, while classical N,N′-chelating ligands such as 1,10-phenantroline (phen) or 2,2′-bipyridyl (bipy) behave as monodentate N-donor ligands yielding [Pd(L-κ-C,N,N)(κ1-N-phen)](ClO4) 10 and [Pd(L-κ-C,N,N)(κ1-N-bipy)](ClO4) 11. Treatment of 1 with PtCl2(DMSO)2 (1:1 molar ratio) in refluxing 2-methoxyethanol gives Cl2Pt[(NH2)2C6H10---N,N′] 13a and [Pt(Cl)(C6H2---4,5-(OMe)2---2-CH=N-(1R,2R)---C6H10---NH2-κ-C,N,N)] 13b, while [Pt(Cl)(L-κ-C,N,N)] 14 can be obtained by reaction of [Pt(μ-Cl)(η3-2-Me---C3H4)]2 with 1 in refluxing CHCl3. Complexes 2 and 3 catalyzed the arylation of methyl acrylate giving good yields of the corresponding methyl cinnamates and TON up to 847 000. Complex 3 also catalyzes the hydroarylation of 2-norbornene, but with lower yields and without enantioselectivity.  相似文献   

16.
Tetraphenylporphyrinatoantimony(V) complexes, linked to boron-dipyrrin chromophores on axial ligands, were synthesized. The fluorescence spectra of 1a, 1b and 1c (3-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]propoxo(methoxo)antimony(V) tetraphenylporphyrin bromide (1a); 6-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]hexyloxo(methoxo)antimony(V) tetraphenylporphyrin bromide (1b); bis{3-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]propoxo}antimony(V) tetraphenylporphyrin bromide (1c)) were analyzed under the excitations of N,N′-difluorobornyl-5-dipyrrinylphenyl (Bdpy) and tetraphenylporphyrinatoantimony(V) (Sb(TPP)) chromophores. Under the irradiation of Bdpy chromophore, the excitation energy was transferred from Bdpy chromophore to the Sb(TPP) moiety at 0.13–0.40 of the quantum yields, even in a polar solvent. On the other hand, the emission of Sb(TPP) chromophores was quenched by Bdpy chromophores at rate constants of 108–109 s−1, independent of on the solvent polarity. Under the excitation of the Bdpy chromophore of 1d (3-[4-(N,N′-difluorobornyl-5-dipyrrinyl)phenyl]propoxo(phenyloxo)antimony(V) tetraphenylporphyrin bromide) involving both the Bdpy and the phenoxy chromophores on the axial ligands, the excited singlet state of the Sb(TPP) chromophore generated by the energy transfer from the Bdpy chromophore was quenched by the phenoxy ligand via non-radiative processes involving electron transfer. However, rapid back electron-transfer may occur because no absorption of the anion radical of Sb(TPP) was observed by nanosecond laser photolysis.  相似文献   

17.
NIR-FT Raman and FT-IR spectra of the crystallized biologically active molecule N,N′-diphenylguanidinium nitrate (DGN) have been recorded and analyzed using quantum chemical computations based on density functional theory. The extraordinary basicity and strong stability of this novel bioactive compound has been discussed as the consequence of resonance stabilization leading to Y-aromaticity and hydrogen bonding. This peculiar Y-delocalization character of DGN is well reflected in the optimized geometry and bond order (BO) calculations. The observance of the equality of C–N bond lengths in the protonated species indicates delocalization of the π-electron system. The spectroscopic and natural bonds orbital (NBO) analysis confirms the occurrence of strong network of inter molecular hydrogen bonds. The changes in electron density in the global minimum and in the energy of hyperconjugative interactions of DGN calculated by second order perturbation theory have been studied extensively in comparison with the values of the neutral species. The observed characteristic ring vibrations are well fit with the theoretical values calculated at B3LYP/6-31G* level.  相似文献   

18.
The effect of serum on structural properties of dimethyl-dioctadecyl-ammonium bromide (DDAB)–1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposomes and DDAB–DOPE/DNA lipoplexes has been investigated by energy dispersive X-ray diffraction (EDXD) technique, at different cationic lipid/DNA weight ratios (ρ). The role of serum on the size of lipoplexes has also been studied by dynamic light scattering. Lipoplex transfection efficiency (TE) as a function of ρ, and lipoplex toxicity to C6 rat glioma cells have been evaluated in Dulbecco's Modified Eagle Medium (DMEM) with and without serum. A multi-parametric analysis concerning the role of size, structure and cytotoxicity on transfection efficiency contributes to explain the experimental observation that 3β-[N-(N′,N′-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol)–DOPE/DNA transfect C6 cells better than DDAB–DOPE/DNA lipoplexes.  相似文献   

19.
The X-ray crystal structures of (N,N′-bis-(o-amidobenzilidene)-1,3-diaminopropane)nickel (Niambpr), (N,N′-bis-(o-amidobenzilidene)-1,4-diaminobutane)nickel (Niambut), (N,N′-bis-(o-thiobenzilidene)-1,4-diaminobutane)nickel(II) (Nitsalbut), bis-acetonitrile-(N,N′-bis-(o-aminobenzyl)-1,2-diaminoethane) nickel(II) tetrafluoroborate [Ni(H4amben)(MeCN)2] [BF4]2, bis-O-acetato-(N,N′-bis-(o-aminobenzyl)-1,2-diaminoethane) nickel(II) [Ni(H4amben)(OAc)2 · H2O] and bis-O-acetato-(N,N′-bis-(o-aminobenzyl)-1,3-diaminopropane) nickel(II) [Ni(H4ambpr)(OAc)2] are presented. These structures complete the structural characterisation of the simple unsubstituted Schiff’s base complexes with N4 and N2S2 donor sets and allow us to assess the effects of donor groups and polymethylene chain length on the coordination geometries of nickel(II). The hydrogenated N4 complexes offer an insight into the effects of increased flexibility and character of the internal nitrogen donors. Unlike the parent N4 imine species the hydrogenated amine species do not deprotonate at the peripheral nitrogen donors and do not seem to be restricted to the meridial plane of the nickel.  相似文献   

20.
The mechanism by which the ribosome catalyze peptide bond formation remains controversial. Here we describe the synthesis of dinucleotides that can be used in kinetic isotope effect experiments to assess the transition state of ribosome catalyzed peptide bond formation. These substrates are the isotopically labeled dinucleotide cytidylyl-(3′-5′)-3′-amino-3′-deoxy-3′-l-phenylalanyl-N6,N6-dimethyladenosine (Cm6ANPhe-NH2) and cytidylyl-(3′-5′)-3′-amino-3′-deoxy-3′-(l-2-hydroxy-3-phenylpropionyl)-N6,N6-dimethyladenosine (Cm6ANPhe-OH). These substrates are active in peptide bond formation and can be used to measure kinetic isotope effects in ribosome catalyzed protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号