首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li J  Lin XQ 《Analytica chimica acta》2007,596(2):222-230
A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0 × 10−7 to 2.1 × 10−5 M and 5.0 × 10−8 to 2.8 × 10−5 M with a detection limit of 3.0 × 10−8 and 1.2 × 10−8 M (s/n = 3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.  相似文献   

2.
用Nafion和亲水性离子液体溴化1-辛基-3-甲基咪唑([OMIM]Br)作修饰剂制作了Nafion-离子液体-修饰碳糊电极;在0.1 mol/L磷酸盐缓冲溶液(pH 7.40)中,用循环伏安法(CV)和方波伏安法(SWV)研究了多巴胺在该修饰电极上的电化学行为,建立了抗坏血酸和尿酸存在下选择性测定多巴胺的新方法.研究表明,该修饰电极降低了多巴胺氧化、还原反应的过电位,增大了其氧化、还原反应的峰电流,而抗坏血酸和尿酸在该修饰电极上无响应;在方波伏安曲线上,多巴胺的氧化电流与其浓度在3.0×10-8~2.0×10-6 mol/L范围内呈线性关系,检出限为1.0×10-8 mol/L.该法可用于注射液和模拟生物样品中多巴胺的测定.  相似文献   

3.
Zhao Y  Gao Y  Zhan D  Liu H  Zhao Q  Kou Y  Shao Y  Li M  Zhuang Q  Zhu Z 《Talanta》2005,66(1):51-57
The electrochemistry of dopamine (DA) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liquid of 1-octyl-3-methylimidazolium hexafluorophosphate (OMIMPF6). The thickness of gel on the surface of the electrode has to be controlled carefully because the charging currents increase with the modified layer being thicker. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated since the peak potential of AA is shifted to more negative values, while that of UA is shifted to more positive values due to the modified electrode. At pH 7.08 the three peaks are separated ca. 0.20 and 0.15 V, respectively; hence DA can be determined in the presence of UA and more than 100 times excess of AA. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 1.0 × 10−6 to 1.0 × 10−4 M. The detection limit of the current technique was found to be 1.0 × 10−7 M based on the signal-to-noise ratio of 3. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect dopamine in the presence of ascorbic acid and uric acid.  相似文献   

4.
Graphene is chemically synthesized by solvothermal reduction of colloidal dispersions of graphite oxide. Graphite electrode is modified with functionalized-graphene for electrochemical applications. Electrochemical characterization of functionalized-graphene modified graphite electrode (FGGE) is carried out by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The behavior of FGGE towards ascorbic acid (AA), dopamine (DA) and uric acid (UA) has been investigated by CV, differential pulse voltammetry (DPV) and chronoamperommetry (CA). The FGGE showed excellent catalytic activity towards electrochemical oxidation of AA, DA and UA compared to that of the bare graphite electrode. The electrochemical oxidation signals of AA, DA and UA are well separated into three distinct peaks with peak potential separation of 193mv, 172mv and 264mV between AA-DA, DA-UA and AA-UA respectively in CV studies and the corresponding peak potential separations in DPV mode are 204mv, 141mv and 345mv. The FGGE is successfully used for the simultaneous detection of AA, DA and UA in their ternary mixture and DA in serum and pharmaceutical samples. The excellent electrocatalytic behavior of FGGE may lead to new applications in electrochemical analysis.  相似文献   

5.
An electrochemically functional nanocomposite through the adsorption of methylene blue onto the multi-walled nanotubes (MB-MWNTs) was prepared, and a sensitive voltammetric sensor was fabricated. The modified electrode showed excellent electrocatalytic activity toward dopamine (DA) and uric acid (UA) in 0.1 M phosphate solution medium (pH 3.0). Compared to the bare electrode, the MB-MWNTs film-modified electrode not only remarkably enhanced the anodic peak currents of DA and UA, i.e., shifted the anodic peak potential of DA negatively, but also avoided the overlapping of the anodic peaks of DA and UA. The interference of ascorbic acid (AA) was eliminated. Under the optimized conditions, the peak separation between AA and DA and between DA and UA was 219 and 174 mV, respectively. In the presence of 1.0 mM AA and 10.0 μM UA, the anodic peak current was linear to the concentration of DA in the range of 0.4–10.0 μM with a detection limit of 0.2 μM DA. The anodic peak current of UA was linear to the concentration in the range of 2.0–20.0 and 20.0–200.0 μM with a lowest detection limit of 1.0 μM in the presence of 1.0 mM AA and 1.0 μM DA.  相似文献   

6.
《中国化学快报》2019,30(9):1643-1646
A highly selective and sensitive electrochemical method was developed for the detection of serotonin (5-hydroxytryptamine, 5-HT) at gold nanoflowers (Au NFs) and overoxidized polypyrrole (OPPy) modified carbon fiber microelectrode (CFME). Carbon fiber was firstly modified with gold nanoflowers using electroless deposition method, and then modified with overoxidized polypyrrole using electrochemical polymerization and overoxidization to obtain OPPy/Au NFs/CFME. The obtained OPPy/Au NFs/CFME was characterized by field emission scanning electron microscopy and electrochemical techniques. It was found that the OPPy/Au NFs/CFME showed good sensitivity for the detection of 5-HT in the range of 10 nmol/L − 7.0 μmol/L with detection limit of 2.3 nmol/L, and negligible interferences from ascorbic acid, 5-hydroxyindole acetic acid and uric acid. The OPPy/Au NFs/CFME was successfully applied to the detection of 5-HT in human serum samples with good recovery. The work demonstrates that the electrochemical method, incorporating signal amplification of Au NFs with higher cation selection of OPPy, provides a promising tool for the detection of 5-HT in biological systems  相似文献   

7.
A gold nanoflowers and overoxidized polypyrrole modified carbon fiber microelectrode (OPPy/Au NFs/CFME) was fabricated using electroless deposition and electrochemical method for highly selective and sensitive detection of 5-HT.  相似文献   

8.
Polycarbazole (PCz) and poly(carbazole-co-p-tolylsulfonyl pyrrole) (PCz-co-p-Tsp) films were electrochemically deposited on single carbon fiber microelectrodes using LiClO4 as electrolyte and acetonitrile as a solvent. The response of the sensors was tested towards different dopamine concentrations. The effect of ascorbic acid on the dopamine signal was analyzed by differential pulse voltammetry. Sensors displaying amperometric response to dopamine concentrations with a detection limit of 0.27 μM dopamine (3S/N) for the PCz modified CFE and 0.5 μM dopamine (3S/N) for the PCz-co-p-Tsp modified CFE; and an efficient protection against ascorbic acid interference at physiology concentration values (500 μM) were obtained. Correspondence: Wolfgang Schuhmann, Analytische Chemie, Elektroanalytik & Sensorik, Ruhr-Universit?t Bochum, D-44780 Bochum, Germany  相似文献   

9.
A simple preparation methodology able to stabilize gold nanoparticles and to obtain an electrode which detects ascorbic acid, uric acid, and dopamine by different techniques is presented. A 3-mercaptopropyl-functionalized silica network was synthesized using the sol–gel method. Gold nanoparticles (nAu) were immobilized on the material at synthesis by adding a sol of these previously prepared particles to the reaction mixture. The electrochemical behavior of the SiO2/MPTS/Au carbon paste electrode was studied using cyclic voltammetry in the presence of a hexacyanoferrate probe molecule. The presence of nAu in the functionalized silica network changes the electrochemical characteristics of the material, favoring the electron transfer process of this complex ion. The SiO2/MPTS/Au electrode was proven to be an efficient tool in the simultaneous determination of ascorbic acid (H2AA), dopamine (DA), and uric acid (UA) using square wave voltammetry techniques. With the nAu on the electrode, an increase in the peak current related to the redox process of the H2AA, DA, and UA was observed. The separations of the anodic peak potentials between DA/H2AA and UA/H2AA were 310 and 442?mV, respectively. The results obtained show that the SiO2/MPTS/Au electrode can be used in the simultaneous determination of H2AA, DA, and UA.  相似文献   

10.
This work reports on the performance of carbon nanotube modified screen-printed electrodes (SPE-MWCNT) for the selective determination of dopamine (DA) in the presence of ascorbic acid (AA) by adsorptive stripping voltammetry (AdSV). Several operating conditions and parameters were examined including the electrochemical pre-treatment and the previous AA interaction and DA accumulation in the presence AA at physiological conditions. Under the chosen conditions, DA peak current of differential pulse voltammograms increases linearly with DA concentration in the range of 5.0 × 10−8 to 1.0 × 10−6 mol L−1 with a limit of detection of 1.5 × 10−8 mol L−1 in connection with 600 s accumulation time. The sensitivity obtained for DA was independent from the presence or absence of AA; therefore, the proposed method can be readily applied to detect DA in real samples. The proposed methodology was successfully used for the quantification of DA in urine samples.  相似文献   

11.
Gold nanoparticles were self-assembled to the modified glassy carbon electrode (GC) with cysteamine (CA) to prepare the nano-Au/CA/GC modified electrode. The electrochemical behavior of epinephrine (EP) on the modified electrode was explored with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Epinephrine gave a pair of redox peaks at Epa = 0.190 mV and Epc = −0.224 mV (versus SCE), respectively. The nano-Au/CA/GC modified electrode shows an excellent electrocatalytic activity for the oxidation of EP. The modified electrode could be used to determine EP in the presence of ascorbic acid (AA). The response of catalytic current with EP concentration shows a linear relation in the range of 1.0 × 10−7 to 5.0 × 10−4 mol L−1 with the correlation coefficient of 0.998. The detection limit is 4.0 × 10−8 mol L−1. The modified electrode exhibited a good reproducibility, sensitivity and stability for the determination of EP injection.  相似文献   

12.
This communication demonstrates that the SiC coated glassy carbon electrode resolved the overlapping voltammetric responses of ascorbic acid (AA), dopamine (DA), and uric acid (UA), which could be used for selective determination of DA in the presence of AA and UA.  相似文献   

13.
二茂铁修饰碳黑微电极同时测定多巴胺和抗坏血酸   总被引:2,自引:0,他引:2  
研究了神经递质多巴胺(DA)和抗坏血酸(AA)在二茂铁修饰碳黑微电极上的电化学行为。实验结果表明,在pH4.5的磷酸盐中,DA在该电极上的线性范围为2.0×10-6~4.0×10-3mol/L,检出限(3σ)为1.0×10-6mol/L;AA在该电极上的线性范围为6.0×10-6~1.0×10-3mol/L,检出限(3σ)为2.0×10-6mol/L;用这种电极可以同时测定多巴胺,抗坏血酸。  相似文献   

14.
Wen XL  Jia YH  Liu ZL 《Talanta》1999,50(5):1027-1033
The electrochemistry of dopamine (3-hydroxytyramine) was studied by cyclic voltammetry at a glassy carbon electrode in the presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) micelles at different pH. The anodic peak potential (E(pa)) and peak current (I(pa)) were found to be remarkably dependent on the charge and the concentration of the surfactant. The E(pa) and I(pa) change abruptly around the critical micellar concentration (CMC) of the surfactants and reach a plateau above the CMC. The E(pa) at the plateau shifts to more positive values in the cationic CTAB micellar solution, e.g. from 180 mV vs SCE in aqueous solution at pH 6.8 to 410 mV in CTAB micelle, whilst it shifts to less positive values in the anionic SDS micellar solution, e.g. 150 mV at pH 6.8. Therefore, the overlapped anodic peaks of dopamine and ascorbic acid in the mixture of the two compounds in aqueous solutions can be separated in CTAB micelles since the micelle shifts the E(pa) of ascorbic acid to less positive values. The two peaks are separated by ca. 400 mV at pH 6.8 in CTAB micelle, hence dopamine can be determined in the presence of 100 times excess of ascorbic acid. In SDS micelle and in the presence of ascorbic acid, the I(pa) of dopamine is greatly enhanced due to the catalytic oxidation of the latter that enables quantitative determination of both compounds.  相似文献   

15.
A carbon paste electrode (CPE) modified by a monolayer film of sodium dodecyl sulfate (SDS) was used for detection of dopamine (DA). Cyclic voltammetry demonstrated improved response of the DA sensor. This suggests the effectivity of surface modification of CPE by SDS. Impedance spectroscopy was used for the characterization of CPE surface properties. The effect of SDS concentration on the electrode quality also reveals that SDS formed a monolayer on CPE surface with a high density of negative-charged end directed outside the electrode. As a result, the carbon paste electrode modified with SDS (SDS/CPE) exerted discrimination against ascorbic acid in physiological circumstance. Thus, it can selectively determine dopamine even in the presence of 220-fold AA combined with differential pulse stripping voltammetry. In pH 7.40 phosphate buffer solution, the oxidation peak current on differential pulse voltammograms increases linearly with the concentration of DA in the range of 5.0 x 10(-7) to 8.0 x 10(-4) mol . L(-1) with a detection limit of 5.0 x 10(-8) mol . L(-1). Satisfying results are achieved when detecting the DA in injection and simulated biology sample.  相似文献   

16.
A graphene-modified glassy carbon electrode was obtained via drop-casting method and applied to the simultaneous detection of epinephrine, uric acid, and ascorbic acid by cyclic voltammetry in a phosphate buffer solution (pH 3.0). The oxidation potentials of epinephrine, uric acid, and ascorbic acid were 0.484, 0.650, and 0.184 V at the graphene-modified glassy carbon electrode, respectively. The peak separation between epinephrine Pand uric acid, epinephrine and ascorbic acid, and uric acid and ascorbic acid was about 166, 300, and 466 mV, respectively. So, this graphene-modified electrode can be used for simultaneous determination of each component in a mixture.  相似文献   

17.
Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 × 10−6 to 1 × 10−5 M. The detection limit is 5 × 10−7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid.  相似文献   

18.
The graphene nanopowder for electro-catalytic oxidation of dopamine and uric acid in the presence of ascorbic acid has been investigated by cyclic voltammetry,linear polarization and chronoamperometry.The graphene nanopowder modified electrode was prepared using the drop coating method,which displayed excellent electrocatalytic activity towards the oxidation of dopamine and uric acid compared with the bare glassy carbon electrode in phosphate buffer solution at pH=7.0.Linear responses for dopamine and uric acid were obtained in the ranges of3.3μmol/L to 249.1μmol/L and 6.7μmol/L to 386.3μmol/L with detection limits of 1.5μmol/L and 2.7μmol/L(S/N=3),respectively.The response time was less than 2 s in case of dopamine and 3 s in case of uric acid,respectively.The results demonstrated that the graphene nanopowder had potential for detecting dopamine and uric acid.  相似文献   

19.
A nafion covered carbon nanotubes-paste electrode modified with poly(m-ferrocenylaniline), (Nf/p(FcAni)-CNTsPE), provides a novel voltammetric sensor for the selective determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). We studied the electrochemical activity of Nf/p(FcAni)-CNTsPE toward DA, UA, and AA by differential pulse voltammetry (DPV). DA and UA anodic peaks appear at 0.30 and 0.45 V, respectively while an anodic peak for AA was not observed. DPV oxidation peak values are linearly dependent on DA concentration over the range 1–150 μM (r2 = 0.992), and on UA concentration over the range 5–250 μM (r2 = 0.997). DA and UA detection limits are estimated to be 0.21 and 0.58 μM, respectively. The modified electrode shows both good selectivity and reproducibility for the selective determination of DA and UA in real samples. Finally, the modified electrode was successfully applied for the determination of DA and UA in pharmaceutical or biological sample fluids.  相似文献   

20.
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1.5 V into 0.1 mol L−1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), ΔEAA-DA = 222 mV; ΔEAA-UA = 360 mV and ΔEDA-UA = 138 mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 × 10−6 mol L−1 for uric acid, 1.3 × 10−5 mol L−1 for ascorbic acid and 1.1 × 10−7 mol L−1 for dopamine, with sensitivities of (7.7 ± 0.5), (0.061 ± 0.001) and (9.5 ± 0.05) A mol−1 cm−2, respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号