首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triplex-forming oligonucleotides (TFOs) are potential DNA-targeting molecules and would become powerful tools for genomic research. As the stabilization of the TFO is partially provided by hydrogen bonds to purine bases, the most stable triplexes form with homopurine/homopyrimidine sequences, and a pyrimidine base in the purine strand of the duplex interrupts triplex formation. If a TFO can recognize sequences including such an interrupting site, the target regions in the genome would be expanded to a greater extent. However, this problem has not been generally solved despite extensive studies. We have previously reported a new base analogue (WNA) constructed of three parts, a benzene ring, a heterocyclic ring, and a bicyclic skeleton to hold these two parts. In this study, we have further investigated modification of WNA systematically and determined two useful WNA analogues, WNA-beta T and WNA-beta C, for selective stabilization of triplexes at a TA and a CG interrupting site, respectively. The triplexes with WNA analogues have exhibited an interesting property in that they are more stable than natural-type triplexes even at low Mg(2+) concentration. From comparison of the results with H-WNA-beta T lacking benzene and those with WNA-H without thymine, it has been suggested that benzene is a major contributor for triplex stability and thymine provides selectivity. Thus, it has been successfully demonstrated that WNA-beta T/TA and WNA-beta C/CG combinations may expand triplex recognition codes in addition to the natural A/AT and G/GC base triplet codes. The results of this study will provide useful information for the design of new WNA analogues to overcome inherent problems for further expansion of triplex recognition codes.  相似文献   

2.
We used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the folding of a set of triple helices and control duplexes. Specifically, we studied the sequences: d(A(7)C(5)T(7)C(5)T(7)), d(A(6)C(5)T(6)C(5)T(6)), d(A(6)C(5)T(6)), d(AGAGAGAC(5)TCTCTCTC(5)TCTCTCT), d(AGAGAC(5)TCTCTC(5)TCTCT), d(AGAGAC(5)TCTCTC(2)), d(AAGGAC(5)TCCTTC(5)TTCCT), d(AGGAAC(5)TTCCTC(5)TCCTT), and d(GAAAGC(5)CTTTCC(5)CTTTC). Circular dichroism spectroscopy indicated that all triplexes and duplexes are in the "B" conformation. DSC melting experiments revealed that the formation of triplexes is accompanied by a favorable free energy change, which arises from the compensation of a large and favorable enthalpic contribution with an unfavorable entropic contribution. Comparison of the thermodynamic profiles of these triplexes yielded enthalpic contributions of -24 kcal/mol, -23 kcal/mol, and -22 kcal/mol for the formation of TAT/TAT, TAT/CGC(+), and CGC(+)/CGC(+) base triplet stacks, respectively. UV melts as a function of sodium concentration show sodium ions stabilize the triplexes that contain only TAT triplets but destabilize the triplexes that contain CGC(+) triplets. UV melts as a function of pH indicate that the protonation of the third strand and loop cytosines stabilizes the triplexes that contain CGC(+) and TAT triplets, respectively. Our overall results suggest that the triplex to duplex transition of triplexes that contain CGC(+) triplets is accompanied by a release of protons and an uptake of sodium, while their duplex to random coil transition is accompanied by a release of sodium ions. A consequence of this opposite sodium dependence is that their coupled transitions are nearly independent of sodium concentration but are dependent on the experimental pH.  相似文献   

3.
An oligonucleotide analog containing 2′-O-methylpseudoisocytidine (P) and 2′-O-methyluridine (X) in an alternated homopyrimidine sequence (P-X-)7P-T can form triplexes with d-A-(G-A-)7G single strand and [d-A-(G-A-)7G]:[d-C-(T-C-)7T] duplex in neutral conditions. An UV mixing titration showed an end point of two units of (P-X-)7P-T to one unit of d-A-(G-A-)7G. This indicates that a [(P-X-)7P-T]·[d-A-(G-A-)7G]·[(P-X-)7P-T] is formed. The [(P-X-)7P-T]·[d-A-(G-A-)7G]·[(P-X-)7P-T] triplex is stable in a 0.1 M NaCl solution at neutral pH. However, the formation of triplex with [(P-X-)7P-T] and a duplex [d-A-(G-A-)7G]·[d-C-(T-C-)7T] can be accomplished in solution also containing 5 mM MgCl2. CD spectra of both triplexes showed large negative bands at wavelength 210–230 nm. Both triplexes can be detected by native gel electrophoresis. The thermal dissociation/association results indicate that this triplex dissociates to the single strands directly without going through a stable duplex intermediate.  相似文献   

4.
We have examined interactions between mitoxantrone (MXT) and DNA duplexes or triplexes with different base compositions by using electrospray ionization mass spectrometry (ESI‐MS), respectively. MXT interacts preferentially with DNA duplexes compared to the triplexes. In the mass spectrum of the duplex–MXT mixture, the complex peaks dominated in the ratios of duplex/MXT of 1:1, 1:2 and 1:3, and the 1:2 duplex/MXT peak was the most abundant. In contrast, only 1:1 triplex–MXT complexes were observed in the mass spectrum of the triplex–MXT mixture, and the most intensive peak was a free triplex ion without MXT. Moreover, no sequence selectivity of MXT to different DNA duplexes was found while MXT showed greater affinity to the triplexes that have adjacent TAT or C+GC sequences. In the course of sustained off‐resonance irradiation collision‐induced dissociation (SORI‐CID), the MXT‐duplex complexes generated two separated strands, and the MXT remained on the purine strand side. UV/Vis spectra showed that MXT interacted with DNA by intercalation. Compared with emodin (a duplex intercalator) and napthylquinoline (a triplex binder), we found that the side chain of MXT might play a role in the binding of MXT to the duplexes and the triplexes. ESI‐MS shows an advantage in speed and straightforwardness for the study of drug interactions with nucleic acids. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Nucleic acid oligonucleotides (ODNs), as drugs, present an exquisite selectivity and affinity that can be used in antigene and antisense strategies for the control of gene expression. In this work we try to answer the following question: How does the molecularity of a DNA triplex affect its overall stability and melting behavior? To this end, we used a combination of temperature-dependent UV spectroscopy and calorimetric (differential scanning calorimetry) techniques to investigate the melting behavior of DNA triplexes with a similar helical stem, TC+TC+TC+T/AGAGAGA/TCTCTCT, but formed with different strand molecularity. We determined standard thermodynamic profiles and the differential binding of protons and counterions accompanying their unfolding. The formation of a triplex is accompanied by a favorable free energy term, resulting from the typical compensation of favorable enthalpy-unfavorable entropy contributions, i.e., the folding of a particular triplex is enthalpy driven. The magnitude of the favorable enthalpy contributions corresponds to the number and strength of the base-triplet stacks formed, which are helped by stacking contributions due to the incorporation of dangling ends or loops. Triplex stability is in the following order: monomolecular > bimolecular > trimolecular; this is explained in terms of additional stacking contributions due to the inclusion of loops. As expected, acidic pH stabilized all triplexes by allowing protonation of the cytosines in the third strand; however, the percentage of protonation increases as the molecularity decreases. The results help to choose adequate solution conditions for the study of triplexes containing different ratios of CGC+ and TAT base triplets and to aid in the design of oligonucleotide sequences as targeting reagents that could effectively react with mRNA sequences involved in human diseases, thereby increasing the feasibility of using the antisense strategy for therapeutic purposes.  相似文献   

6.
We describe the synthesis of the phosphoramidite building blocks of alpha-tricyclo-DNA (alpha-tc-DNA) covering all four natural bases, starting from the already known corresponding alpha-tc-nucleosides. These building blocks were used for the preparation of three alpha-tc-oligonucleotide 10-mers representing a homopurine, a homopyrimidine, and a mixed purine/pyrimidine base sequence. The base-pairing properties with complementary parallel and antiparallel oriented DNA and RNA were studied by UV-melting analysis and CD spectroscopy. We found that alpha-tc-DNA binds preferentially to parallel nucleic acid complements through Watson-Crick duplex formation, with a preference for RNA over DNA. In comparison with natural DNA, alpha-tc-DNA shows equal to enhanced affinity to RNA and also pairs to antiparallel DNA or RNA complements, although with much lower affinity. In the mixed-base sequence these antiparallel duplexes are of the reversed Watson-Crick type, while in the homopurine/homopyrimidine sequences Hoogsteen and/or reversed Hoogsteen pairing is observed. Antiparallel duplex formation of two alpha-tc-oligonucleotides was also observed, although the thermal stability of this duplex was surprisingly low. The base-pairing properties of alpha-tc-DNA are discussed in the context of alpha-DNA, alpha-RNA, and alpha-LNA.  相似文献   

7.

Background  

A third DNA strand can bind into the major groove of a homopurine duplex DNA to form a DNA triple helix. Sequence specific triplex formation can be applied for gene targeting, gene silencing and mutagenesis.  相似文献   

8.
Triplex-forming oligonucleotides (TFOs) are sequence-specific DNA-binding agents, but their target duplexes are limited to homopurine/homopyrimidine sequences because of interruption of the pyrimidines bases in the purine region. This problem has not been fully solved despite a wide variety of studies. Recently, we have developed a bicyclic system as a novel scaffold for nucleoside analogues (WNA, W-shaped nucleoside analogues) and determined two useful compounds, WNA-betaT (2) and WNA-betaC (5), for highly stable and selective triplex formation at a TA and a CG interrupting site, respectively. However, subsequent investigations have shown that the triplex formation using WNA is dependent on the neighboring bases of the TFOs. In this study, we have synthesized new WNA derivatives having halogenated recognition bases or benzene rings and evaluated the effects of the modifications on the triplex stability as well as selectivity. It has been found that the WNA-betaT analogues holding 5-halogenated pyrimidine bases (WNA-beta(Br)U (3) and WNA-beta(F)U (4)) exhibit high CG-selectivity. On the other hand, the WNA-betaT derivatives having the bromo-substituted benzene ring (mBr-WNA-betaT (10) and oBr-WNA-betaT (11)) have shown high selectivity to a TA interrupting site with high stability in the sequences to which the original WNA-betaT do not bind. Thus, sequence-dependency has been overcome by the sequence-dependent use of WNA-betaT, mBr-WNA-betaT, and oBr-WNA-betaT.  相似文献   

9.
Targeted mutagenesis and gene knock-out can be mediated by triple helix-forming oligonucleotides (TFO) linked to mutagenic agents, such as psoralen. However, this strategy is limited by the availability of homopurine/ homopyrimidine stretches at or near the target site because such sequences are required for high-affinity triplex formation. To overcome this limitation, we have tested TFO conjugated to psoralen via linker arms of lengths varying from 2 to 86 bonds, thereby designed to deliver the psoralen at varying distances from the third strand binding site present at the 3'end of the supFG1 mutation reporter gene. Following triplex formation and UVA irradiation, mutations were detected using an SV40-based shuttle vector assay in human cells. The frequency and distribution of mutations depended on the length of the linker arm. Precise targeting was observed only for linker arms of length 2 and 6, which also yielded the highest mutation frequencies (3 and 14%, respectively). Psoralen–TFO with longer tethers yielded mutations at multiple sites, with the maximum distance from the triplex site limited by the linker length but with the distribution within that range influenced by the propensity for psoralen intercalation at A:T base-pair-rich sites. Thus, gene modification can be extended beyond the site of third strand binding but with a decrease in the precision of the targeting.  相似文献   

10.
《Chemistry & biology》1996,3(3):197-206
Background: The natural nucleic acids (DNA and RNA) can adopt a variety of structures besides the antiparallel double helix described by Watson and Crick, depending on base sequence and solvent conditions. Specifically base-paired DNA structures with regular backbone units include left-handed and parallel duplexes and triple and quadruple helical arrangements. Given the base-pairing pattern of the natural bases, preferences for how single strands associate are determined by the structure and flexibility of the sugar-phosphate backbone. We set out to determine the role of the backbone in complex formation by designing DNA analogs with well defined modifications in backbone structure.Results: We recently developed a DNA analog (bicyclo-DNA) in which one (γ) of the six torsion angles (a-ζ) describing the DNA-backbone conformation is fixed in an orientation that deviates from that observed in B-DNA duplexes by about +100°, a shift from the synclinal to the antiperiplanar range. Upon duplex formation between homopurine and homopyrimidine sequences, this analog preferentially selects the Hoogsteen and reversed Hoogsteen mode, forming A-T and G-C+ base pairs. Base-pair formation is highly selective, but degeneracy is observed with respect to strand orientation in the duplex.Conclusions: The flexibility and orientation of the DNA backbone can influence the preferences of the natural bases for base-pairing modes, and can alter the relative stability of duplexes and triplexes.  相似文献   

11.
Two optimally capped duplex DNA molecules (σ-DNA; see 1 and 4 ) were synthesized and their utility demonstrated for triplex investigations with their corresponding homopyrimidine DNA and RNA single strands in the D⋅(D⋅D) and R⋅(D⋅D) Hoogsteen mode. Furthermore, it was established that σ-DNA is an ideal tool to study the pH dependency of triplex formation.  相似文献   

12.
Neomycin is the most effective aminoglycoside (groove binder) in stabilizing a DNA triple helix. It stabilizes TAT, as well as mixed base DNA triplexes, better than known DNA minor groove binders (which usually destabilize the triplex) and polyamines. Neomycin selectively stabilizes the triplex (in the presence of salt), without any effect on the DNA duplex. (1) Triplex stabilization by neomycin is salt dependent (increased KCl and MgCl(2) concentrations decrease neomycin's effectiveness, at a fixed drug concentration). (2) Triplex stabilization by neomycin is pH dependent (increased pH decreases neomycin's effectiveness, at a fixed drug concentration). (3) CD binding studies indicate approximately 5-7 base triplets/drug apparent binding site, depending upon the structure/sequence of the triplex. (4) Neomycin shows nonintercalative groove binding to the DNA triplex, as evident from viscometric studies. (5) Neomycin shows a preference for stabilization of TAT triplets but can also accommodate CGC(+) triplets. (6) Isothermal titration calorimetry (ITC) studies reveal an association constant of approximately 2 x 10(5) M(-)(1) between neomycin and an intramolecular triplex and a higher K(a) for polydA.2polydT. (7) Binding/modeling studies show a marked preference for neomycin binding to the larger W-H groove. Ring I/II amino groups and ring IV amines are proposed to be involved in the recognition process. (8) The novel selectivity of neomycin is suggested to be a function of its charge and shape complementarity to the triplex W-H groove, making neomycin the first molecule that selectively recognizes a triplex groove over a duplex groove.  相似文献   

13.
The kinetics and equilibria of the interaction of ethidium bromide (EB) with the triple-stranded RNA, poly(rA).2poly(rU), have been investigated by stopped-flow, absorption, fluorescence, and circular dichroism methods; to properly assess the effect of the third strand on the polymer molar properties, molar volumes, adiabatic compressibilities, and heats of melting have also been measured for both poly(rA).2poly(rU) and poly(rA).poly(rU). The melting experiments reveal that ethidium tends to destabilize the triplex, whereas it stabilizes the duplex; however, the triplex/ethidium system in 0.1 M NaCl is stable below 37 degrees C. The static titrations reveal that one ethidium ion binds every three base triplets of the polymer; on the basis of the excluded-site model, this feature suggests intercalation, as in the duplex, but the binding affinity for the triplex is weaker compared to that for the duplex. The kinetic experiments displayed a two-phase behavior, which was rationalized assuming the sequence D + S right arrow over left arrow DS(I), DS(I) + S right arrow over left arrow DS(II) + S (D = drug, S = site), the second step involving direct transfer of the drug between strands. Comparison with the duplex/EB system reveals that the additional strand of poly(U), present in the triplex, hinders the formation of the intermediate complex DS(I), while stabilizing the structure of the final DS(II) complex by hampering the partial slipping out of the dye from the triplex cavity.  相似文献   

14.
Synthesis of a BQQ-neomycin conjugate is reported. The conjugate combines two ligands, one known to intercalate triplexes (BQQ) and another known to bind in the triplex groove (neomycin). The conjugate stabilizes T.A.T, as well as mixed base DNA triplex, better than neomycin, BQQ, or a combination of both. The conjugate selectively stabilizes the triplex (in the presence of physiological salt concentrations), with as little as 4 muM of the ligand leading to a DeltaTm of >60 degrees C. Competition dialysis studies show a clear preference for the drug binding to triplex DNA/RNA over the duplex/single strand structures. Modeling studies suggest a structure of neomycin bound to the larger W-H (Watson-Hoogsteen) groove with BQQ intercalated between the triplex bases.  相似文献   

15.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   

16.
Molecular dynamics and thermodynamic integration calculations have been carried out on a set of G-rich single-strand, duplex, triplex, and quadruplex DNAs to study the structural and stability changes connected with the guanine --> 6-thioguanine (G --> S) mutation. The presence of 6-thioguanine leads to a shift of the geometry from the B/A intermediate to the pure B-form in duplex DNA. The G --> S mutation does not largely affect the structure of the antiparallel triplex when it is located at the reverse-Hoogsteen position, but leads to a non-negligible local distortion in the structure when it is located at the Watson-Crick position. The G --> S mutation leads to destabilization of all studied structures: the lowest effect has been observed for the G --> S mutation in the reverse-Hoogsteen strand of the triplex, a medium effect has been observed in the Watson-Crick strand of the triplex and duplex, and the highest influence of the G -->S mutation has been found for the quadruplex structures.  相似文献   

17.
A triple helix, formed by a 13 nucleotide (nt) all-purine oligonucleotide, containing six contiguous guanines, oriented parallel to a homopurine strand present in the polypurine tract of Friend leukemia virus, was obtained in 0.1 M LiCl. Its dissociation constant at 25 degrees C, given by electrophoretic titration, of the order of 50 nM, is at least ten times lower than that of the corresponding antiparallel triplex formed on the same target. At 4 degrees C, the parallel orientation of the homopurine strands is favored to the point that the guanine block of 6 nt, present in the 'antiparallel' oligonucleotide, attaches in a parallel fashion to the corresponding block in the target strand, to generate a partial, parallel triplex, that coexists with the antiparallel one.  相似文献   

18.
We describe the synthesis and the incorporation into oligonucleotides of the novel nucleoside building blocks 9, 10 , and 16 , carrying purine‐like double H‐bond‐acceptor bases. These base‐modified nucleosides were conceived to recognize selectively a cytosine⋅guanine (C⋅G) inversion site within a homopurine⋅homopyrimidine DNA duplex, when constituent of a DNA third strand designed to bind in the parallel binding motif. While building block 16 turned out to be incompatible with standard oligonucleotide‐synthesis conditions, UV/triplex melting experiments with third‐strand 15‐mers containing β‐D ‐nucleoside 6 (from 9 ) showed that recognition of the four natural Watson‐Crick base pairs follows the order G⋅C≈C⋅G>A⋅T>T⋅A. The recognition is sequence‐context sensitive, and G⋅C or C⋅G recognition does not involve protonated species of β‐D ‐nucleoside 6 . The data obtained fit (but do not prove) a structural model for C⋅G recognition via one conventional and one C−H⋅⋅⋅O H‐bond. The unexpected G⋅C recognition is best explained by third‐strand base intercalation. A comparison of the triplex binding properties of these new bases with those of 4‐deoxothymine (5‐methylpyrimidine‐2(1H)‐one, 4 HT), previously shown to be C⋅G selective but energetically weak, is also described.  相似文献   

19.
A more elaborate sequence‐independent triple‐helix formation viability study was carried out and extended from a recombination‐like triple‐helical DNA motif of a previous study (J. Mol. Recognition 14, 122–139 (2001)). The intended triple‐helix was formed by mixing one part of a DNA hairpin duplex and one part of a single (or third) strand identical to one of the duplex strands and complementary to the other strand. In contrast to the common purine and pyrimidine motifs in triple‐stranded DNA, the strands of the recombination‐like motif are not monotonously built from pyrimidine only, or purine only, in the sequence. The stability of the recombination‐like motif triplexes with varying sequences was monitored by UV thermal melting curves. The results showed that the order of the stability of the R‐form DNA base triads (J. Mol. Biol., 239, 181–200 (1994)) is G*(G ○ C) > C*(C ○ G) > A*(A ○ T) >T*(T ○ A) (the Watson‐Crick base pair is denoted in the parentheses) in 200 mM NaCl, at pH 7. In an attempt to increase the stability of the triplex in the recombination‐like motif, we replaced cytidine by 5‐methylcytidine (mC) of the third strand. There is a general trend that mC modification stabilizes the complex (<2 °C per mC). The complex is furthermore stabilized by Mg2+ ion. The Tm increases from 7 to 2 °C from less stable to highly stable triplex by 20 mM Mg2+ ion in solution.  相似文献   

20.
The syntheses of six different phosphoramidite building blocks of 6-oxocytosine and 5-allyl-6-oxocytosine as analogues of N(3)-protonated cytosine are described. These compounds have been incorporated into oligonucleotides by standard solid-phase synthesis. Hybridization of 15-mer Hoogsteen strands with target 21-mer duplexes was investigated. Comparison of the triplex-forming abilities of the different building blocks revealed that: i) 5-allyl substitution has a negative influence on triplex stability, ii) a uniform backbone of the Hoogsteen strand stabilizes triplexes relative to mixed backbones; iii) RNA strands with 6-oxocytidine or 5-allyl-6-oxocytidine do not form a triple helix with the DNA target duplex, probably due to backbone torsional constraints; and (iv) a 15-mer DNA sequence with three isolated 2'-deoxy-6-oxocytidines has the highest T(m) of all cytidine analogues investigated in this study. CD experiments provided further evidence for the presence or absence of triplex structures. In the course of these temperature-dependent CD measurements we were able to detect duplex and triplex melting independent from each other at selected wavelengths. This methodology is especially interesting in cases where UV melting curves show only one transition owing to spectral overlap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号