首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zymomonas mobilis is the only known microorganism that utilizes the Entner–Doudoroff (ED) pathway anaerobically. In this work, we investigated whether the overexpression of a phosphofructokinase (PFK), the only missing Embden–Meyerhof–Parnas (EMP) pathway enzyme, could establish the pathway in this organism. Introduction of a pyrophosphate-dependent PFK, along with co-expression of homologous fructose-1,6-bisphosphate aldolase and triosephosphate isomerase, did not result in an EMP flux to any appreciable level. However, the metabolism of glucose was impacted significantly. Eight percent of glucose was metabolized to form a new metabolite, dihydroxyacetone. Reducing flux through the ED pathway by as much as 40 % through antisense of a key enzyme, ED aldolase, did not result in a fully functional EMP pathway, suggesting that the ED pathway, especially the lower arm, downstream from glyceraldehyde-3-phosphate, is very rigid, possibly due to redox balance.  相似文献   

2.
The aim of this work was to further investigate the glycolysis performance of lager and ale brewer??s yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15?°C to 10?°C, which resulted in the prolonged fermentation times. The maximum activities (V max) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22?C84?%) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V max of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer??s yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V max and improve the production efficiency and beer quality.  相似文献   

3.
The use of capillary electrophoresis and indirect detection to quantify reaction products of in-capillary enzyme-catalyzed microreactions is described. Migrating in a capillary under conditions of electrophoresis, plugs of enzyme and substrate are injected and allowed to react. Capillary electrophoresis is subsequently used to measure the extent of reaction. This technique is demonstrated using two model systems: the conversion of fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate by fructose-biphosphate aldolase (ALD, EC 4.1.2.13), and the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate by fructose-1,6-bisphospatase (FBPase, EC 3.1.3.11). These procedures expand the use of the capillary as a microreactor and offer a new approach to analyzing enzyme-mediated reactions.  相似文献   

4.
A highly selective, interference free biosensor for the measurement of fructose in real syrup samples was developed. The assay is based on the phosphorylation of d(−)fructose to fructose-6-phosphate by hexokinase and subsequent conversion of fructose-6-phosphate to fructose-1,6-biphosphate by fructose-6-phosphate-kinase. The heat liberated in the second reaction is monitored using an enzyme thermistor. The major advantages of this biosensor are rapid and selective measurement of fructose without the need to eliminate glucose and inexpensive FIA-based, mediator-free calorimetric measurement suitable for regular fructose analysis. This method was optimised for parameters, such as pH, ionic strength, interference, operational stability and shelf life. Good and reproducible linearity (0.5-6.0 mM) with a detection limit of 0.12 mM was obtained. Fructose determination in commercial syrup samples and spiked samples confirmed the reliability of this set-up and technique. The biosensor gave reproducible results with good overall stability for continuous measurements over a period of three months besides a useful shelf life of six months. The method could be used for routine fructose monitoring in food samples.  相似文献   

5.
An investigation was carried out to find out the extent of changes occurred in groundnut (Arachis hypogaea L.) cultivars in response to paclobutrazol (PBZ) treatment under water deficit stress. Two groundnut cultivars namely ICG 221 and ICG 476 were used for the study. Individual treatment with PBZ and drought stress showed an increase in ascorbic acid, -tocopherol and reduced glutathione, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities. PBZ with drought stressed plants maintained higher levels of antioxidant and scavenging enzymes. Significant differences were observed between cultivars and treatments. These results suggests that the adverse effects of water stress can be minimized by the application of PBZ by increasing the antioxidant levels and activities of scavenging enzymes such as SOD, APX and CAT. The Cv. ICG 221 appears to be more tolerant to water stress than the ICG 476.  相似文献   

6.
Summary The use of hydrophobic-interaction chromatography (HIC) is proposed for the simultaneous determination of more than one thiol-protein after formation of the corresponding mercury mercaptides withp-hydroxymercuribenzoate (PHMB). The new chromatographic procedure, based on the HIC separation of the modified proteins from each other and from excess organomercury reagent has been successfully applied to the quantitative determination of phosphoglucose isomerase (PGI) and phosphoglucose mutase (PGM) in crude PGI powder, and of L-lactate dehydrogenase, PGM and aldolase in crude pyruvate kinase from rabbit muscle. The suitability of203Hg-labelled PHMB has been tested in the analysis of mixtures, which give barely distinguishable UV-peaks owing to the presence of other non-thiol components in the sample. For this purpose glyceraldehyde 3-phosphate dehydrogenase (GAPDHy) and PGIy from bakers yeast have been considered. Results obtained in experiments performed by both procedures are reported.  相似文献   

7.
The competition between the Escherichia coli carbohydrate phosphotransferase system and 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase for phosphoenolpyruvate limits the concentration and yield of natural products microbially synthesized via the shikimate pathway. To circumvent this competition for phosphoenolpyruvate, a shikimate pathway variant has been created. 2-Keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases encoded by Escherichia coli dgoA and Klebsiella pneumoniae dgoA are subjected to directed evolution. The evolved KDPGal aldolase isozymes exhibit 4-8-fold higher specific activities relative to that for native KDPGal aldolase with respect to catalyzing the condensation of pyruvate and d-erythrose 4-phosphate to produce DAHP. To probe the ability of the created shikimate pathway variant to support microbial growth and metabolism, growth rates and synthesis of 3-dehydroshikimate are examined for E. coli constructs that lack phosphoenolpruvate-based DAHP synthase activity and rely on evolved KDPGal aldolase for biosynthesis of shikimate pathway intermediates and products.  相似文献   

8.
Fructose 1,6-bisphosphate aldolase, a glycolytic enzyme, catalyzes the cleavage of fructose 1,6-bisphosphate, resulting in two three-carbon products. The reaction of the class I enzymes, which utilize a Schiff-base intermediate, requires that the hexose be in the open-chain form. This form comprises only 1-2% of the sugar at equilibrium. The chemical form of the substrate that binds to aldolase and begins the catalytic cycle has not been unequivocally demonstrated. Transient-state kinetics in single-turnover experiments of fructose 1,6-bisphosphate with aldolase in excess reveals the rates of the intermediate steps in the cleavage reaction, including those from initial binding to Schiff-base formation. The rate of hexose Schiff-base formation was faster than the uncatalyzed rate for ring-opening of either the alpha- or beta-furanose at 4 degrees C. In addition, approach-to-equilibrium experiments reveal that aldolase binds and reacts first with 70% of fructose-1,6-bisphosphate in a fast reaction, consistent with the amount of beta-anomer in solution, and with the remaining 30%, presumably the alpha-anomer, in a slow reaction. These results indicate that aldolase must catalyze the ring-opening step and that there may be a previously unrecognized second active site on the enzyme for catalyzing this reaction.  相似文献   

9.
2-Deoxyribose 5-phosphate (DR5P) is a key intermediate in the biocatalyzed preparation of deoxyribonucleosides. Therefore, DR5P production by means of simpler, cleaner, and economic pathways becomes highly interesting. One strategy involves the use of bacterial whole cells containing DR5P aldolase as biocatalyst for the aldol addition between acetaldehyde and d-glyceraldehyde 3-phosphate or glycolytic intermediates that in situ generate the acceptor substrate. In this work, diverse microorganisms capable of synthesizing DR5P were selected by screening several bacteria genera. In particular, Erwinia carotovora ATCC 33260 was identified as a new biocatalyst that afforded 14.1-mM DR5P starting from a cheap raw material like glucose.  相似文献   

10.
A total of four enzymatic steps were combined, in a one-pot reaction, to synthesize carbohydrates starting from glycerol. First, phosphorylation of glycerol by reaction with pyrophosphate in the presence of phytase at pH 4.0 in 95% glycerol afforded racemic glycerol-3-phosphate in 100% yield. The L-enantiomer of the latter underwent selective aerobic oxidation to dihydroxyacetone phosphate (DHAP) at pH 7.5 in the presence of glycerolphosphate oxidase (GPO) and catalase. Subsequently, fructose-1,6-bisphosphate aldolase catalyzed the aldol reaction of DHAP with butanal. Finally, dephosphorylation of the aldol adduct was mediated by phytase at pH 4 affording 5-deoxy-5-ethyl-D-xylulose in 57% yield from L-glycerol-3-phosphate. The phytase on/off-switch by pH was the key to controlling phosphorylation and dephosphorylation.  相似文献   

11.
Efficient and stereoselective polyhydroxylated nitrocyclitol syntheses were performed via biocatalysed aldol reactions. The key step was based on a one-pot/one-enzyme cascade reaction process where two reactions occur: aldolase-catalysed aldolisation and spontaneous intramolecular nitroaldolisation. The synthetic methodology was investigated using fructose-6-phosphate aldolase A129S for the synthesis of known nitrocyclitols. Improvements were obtained which involved less steps and increased yields. Several new nitrocyclitols were also prepared using hydroxyacetone (HA) as the donor and FSA wt. From nitrocyclitol stereochemical analyses, the intramolecular nitro-Henry reaction stereoselectivity was dependent on the donor substrate used, HA or dihydroxyacetone (DHA). Whereas DHA provided two stereoisomers, four were obtained using HA.  相似文献   

12.
A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraldehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with kcat/KMvalues of 33, 75, and 20 M-1 s-1, respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization.  相似文献   

13.
Abstract

The racemic methylene analogue of 3-phospho-D-glyceric acid1–4 has been shown to be a viable substrate for the combined action of 3-phosphoglycerate kinase, PGK, and glyceraldehyde 3-phosphate dehydrogenase, GPD. We have shown that replacement of CH2 by CHF or CF2 in a variety of nucleotide analogues4,5 can lead to improved Performance as enzyme substrates or inhibitors. We have therefore undertaken enantiospecific syntheses of the methylene- and fluoro-methylene-analogues of 3-phospho-D-glyceric acid to investigate their interaction with PGK and GPD and explore whether the fluorine atom in the latter can mimic an oxygen lone-pair in binding to enzymes.  相似文献   

14.
Transaldolase reacts with fructose-6-phosphate to form a stable transaldolase-dihydroxyacetone complex. This complex intermediate has the structure of a Schiff base. Two methods are described for the quantitative determination of this complex:
  1. Reduction of the enzymatically active Schiff base with borohydride to an inactive secondary amine (irreversible).
  2. Addition of cyanide to the Schiff base intermediate forming an inactive aminonitrile derivate (reversible).
The amount of the complex present can be calculated by the percentage of inactivation of the original enzyme activity. The number of active sites of transaldolase can be evaluated by measuring the specific incorporation of radioactive compounds with known specific activity into the complex intermediate. With two different methods the number of combining sites of transaldolase from Candida utilis for fructose-6-phosphate has been found to be one.  相似文献   

15.
Glycolytic potential is a hot aspect to meat quality research in recent years. Phosphofructokinase, muscle type (PFKM), is a key regulatory enzyme used to catalyze the irreversible conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. The present study was designed to investigate the association of PFKM SNP and meat quality traits in pigs. In this study, the 2,864-bp full-length cDNA sequence of the porcine PFKM gene was obtained, which contained 30 bp of 5′ UTR, 2,343 bp of coding region, and 491 bp of 3′ UTR. The porcine PFKM mRNA was predominantly expressed in skeletal muscle and heart. One single nucleotide polymorphism (SNP) T129C in exon 13 of PFKM gene was detected, with its allele frequencies significantly different between Chinese indigenous pig breed and Western pig breeds. The SNP was significantly associated with meat color value (m. biceps femoris), meat marbling (m. longissimus dorsi), meat marbling (m. biceps femoris), intramuscular fat (m. longissimus dorsi) (P?PFKM gene.  相似文献   

16.
In-vitro fluorescent enzyme assays have been developed for sucrose phosphorylase (SPO) and phosphoglucomutase (PGM). These assays make use of a selective carbohydrate sensing system that detects the unlabeled enzymatic products fructose and glucose-6-phosphate. The system comprises 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt as the reporter unit and boronic acid appended viologens as selective receptors with working ranges from 70 μM to 1.0 mM for fructose (SPO) and 190 μM to 2.0 mM for glucose-6-phosphate (PGM). The change in fluorescence can be converted into product concentration, allowing initial reaction velocities and Michaelis-Menten kinetics to be calculated. The assays are also carried out in multiwell plate formats, making them suitable for high-throughput screening of enzyme inhibitors. Rapid PGM inhibition screening is demonstrated with EDTA and LiCl. The PGM assay can also be used for enzyme quantification with a detection limit of 50 ng mL−1.  相似文献   

17.
N-acetyl glucosamine is a competitive inhibitor (K t= 0.7 mM) of red blood cell hexokinase with respect to glucose. This property has been utilized for the purification of hexokinase by means of Sepharose-TV-aminohexanoyl-glucosamine. Studies with this matrix have proved that ionic strength and pH play a very important role in the binding of hexokinase to the affinity column. Therefore their control is essential in order to minimize nonspecific binding and to maximize the purification. Methods for rejuvenation of columns, the effect of protein concentration, and the nature of the binding are also discussed in this paper.  相似文献   

18.
Exogenous addition of a low concentration of acetate (2 g/L sodium acetate) effectively decreased acetic acid excretion and lowered the ATP content in Sporolactobacillus sp. Y2-8 without any growth defect although the acetate could not be utilized at an initial glucose concentration of 150 g/L. This induced an enhanced glycolytic flux with increased specific activities of hexokinase and phosphofructokinase, probably to compensate for the lowered efficiency of ATP production. However, with increasing concentrations (5 g/L sodium acetate), acetate was utilized first before being produced again, causing a growth lag at the transition. Glucose consumption was also reduced at high acetate concentrations, resulting in decreased D-lactic acid production. These results demonstrate that acetate plays a significant role in regulating glycolysis and growth of Sporolactobacillus.  相似文献   

19.
The extraordinarily rapid growth of malignant tumors depends heavily on the glucose metabolism by the pathways of glycolysis and mitochondrial oxidative phosphorylation to generate adenosine 5′-triphosphate (ATP) for maintaining cell proliferation and tumor growth. This study reports a tumor chemical suffocation therapeutic strategy by concurrently suppressing both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) via the co-deliveries of EDTA and rotenone into a glutathione (GSH)-overexpressed tumor microenvironment. EDTA is to block the glycolytic pathway through inhibiting the activity of glycolytic enzymes via the chelation of magnesium ion, a co-worker of glycolytic enzymes, despite the presence of Ca2+. Meanwhile rotenone is to inhibit the mitochondrial OXPHOS. This work provides a novel tumor suffocation strategy by the co-deliveries of glucose metabolism inhibitors, especially by de-functioning glycolytic enzymes via eliminating their co-worker magnesium.

The EDTA- and Rotenone-loaded MPER nanoparticles have been synthesized to suffocate tumor cells to death through inhibiting glycolytic process and mitochondrial oxidative phosphorylation simultaneously in vitro and in vivo.  相似文献   

20.
For Trypanosoma brucei, a parasite responsible for African sleeping sickness, carbohydrate metabolism is the only source of ATP, and glycolytic enzymes are localized within membrane-bound organelles called glycosomes. Hexokinase, the first enzyme of the glycolytic pathway, was chosen as a target for selective drug design. We have cloned and sequenced the hexokinase gene of T. brucei. In parallel, we have synthesized several inhibitors. Kinetic analysis revealed differences in the binding mode of these compounds toward yeast and T. brucei hexokinases, while the m-bromophenyl glucosamide was found to be selective for T. brucei. The modeled structure of T. brucei hexokinase-inhibitor complex (using the crystal structure of the Schistosoma mansoni hexokinase as a template) allows us to propose a mode of action of this inhibitor for the trypanosome hexokinase and to account for the observed selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号