首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative analysis of the electrotransport and thermochemical properties of homogeneous and heterogeneous sulfocationite membranes modified with polyaniline has been performed. The relationship between the conditions of polyaniline synthesis in the membrane matrix and their electric conductivity, electroosmotic permeability, and thermal stability was studied. The conditions of polyaniline synthesis on the surface of a heterogeneous MK-40 membrane had an insignificant effect on the amount of the introduced modifier, while the electric conductivity of the composites remained high enough. The absence of the effect of the polyaniline synthesis conditions on the electric conductivity of МK-40-based composites suggests that the heterogeneity of this membrane is a more significant factor than the polyaniline synthesis conditions. A thermogravimetric analysis of the thermochemical properties showed a significant increase in the thermal stability of the heterogeneous membrane after its modification with polyaniline. For perfluorinated membranes, the thermochemical properties changed less significantly, but the electrotransport of ions and water significantly decreased after modification.  相似文献   

2.
In this work, silver (Ag) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by chemical reduction while Ag-decorated MWNTs (Ag-MWNTs)/polyaniline (PANI) composites were prepared by oxidation polymerization. The effect of the Ag incorporated into the interface of the composites on the electrochemical performance of the MWNTs/PANI was investigated. It was found that highly dispersed Ag nanoparticles were deposited onto the MWNTs, and the Ag-MWNTs were successfully coated by PANI. According to cyclic voltammograms, the Ag-MWNTs/PANI exhibited significantly increased electrochemical performances compared to MWNTs/PANI and the highest specific capacitance obtained of MWNTs/PANI and 0.15 M Ag-MWNTs/PANI was 162 F/g and 205 F/g, respectively. This indicated that Ag nanoparticles that were deposited onto the MWNTs caused an enhanced electrochemical performance of the MWNTs/PANI due to their high electric conductivity, which resulted in an increase of the charge transfer between the MWNTs and PANI by a bridge effect.  相似文献   

3.
A fast, simple and environmentally friendly new electrochemical method capable of enhancing the conductivity of a preformed polyaniline film has been found. Utilizing this method of electrochemical forcing pre-treatment at a certain effective voltage, a polyaniline solid matrix can be made more conductive. For example, the conductivity of a preformed polyaniline film (as thick as 10 μm) can be easily enhanced by about an order of magnitude within a pretreatment time of only ca. 5 min. The UV-Vis-NIR and ESR spectroscopic evidences indicated that the charge carriers in the polyaniline matrix are more delocalized after such electrochemical pretreatments. The results of CV studies indicated that the resultant polyaniline film has higher charge transport efficiency and a greater redox rate. Such phenomenon may be linked with a possible backbone conformational change, as induced by this novel electrochemical pretreatment, within the solid matrix ofpolyaniline film.  相似文献   

4.
A method of chemical template synthesis is described for producing composites based on a perfluorinated matrix with polyaniline chains implanted. It has been shown that the choice of experimental and conditioning techniques is relevant for the composites’ investigation. The conductivity, diffusion permeability, selectivity, and electroosmotic permeability of the composites have been investigated in comparison with the same properties of the initial MF-4SC membrane. A model describing the transport behavior of the composites in the doped state as a fibrous-cluster system is proposed. A set of transport and structural parameters of the composites in a H2SO4 solution has been calculated and an analysis of the results observed has been carried out. The set of electrotransport properties is explained by the morphological features of the composites, taking into account the redox heterogeneity of polyaniline. The contribution of electron conductivity to the mixed conductivity of composites with a certain saturation degree by polyaniline has been estimated.  相似文献   

5.
We have described the primary studies on the conductivity and molecular weight of polyaniline in an electric field as it is used in a field effect experimental configuration. We report further studies on doped in-situ deposited polyaniline. First we have chemically synthesized polyaniline by ammonium peroxodisulfate in an acidic solution, with aqueous, organic and emulsion conditions at different times. Next, we measured mass and conductivity and obtained the best time of polymerizations. Then, we repeated these reactions under different electrical fields in constant time and measured mass and conductivity. The polyaniline is characterized by gel permeation chromatography (GPC), UV-visible spectroscopy and electrical conductivity. Polyanilines with high molecular weight are synthesized under electric field M w = (5.2–6.8) × 105, with M w/M n = 2.0–2.5. The UV-visible spectra of polyanilines oxidized by ammonium peroxodisulfate and protonated with dodecylbenzenesulfonic acid (PANi-DBSA), in N-methylpyrolidone (NMP) show a smeared polaron peak shifted into the visible. Electrical conductivity of polyaniline has been studied by four-probe method. The conductivity of the films of emeraldine protonated by DBSA cast from NMP is higher than 500 S/cm under (10 kV/cm2 of potential) electric field and shows an enhanced resistance to ageing. Next, we carried chemical polymerization at the best electric field at different times. Finally, the best time and amount of electric field were determined. Polymers synthesized under an electric field probably have better physical properties regarding the existence of less branching and high electric conductivity.  相似文献   

6.
A method for the synthesis of aniline-aniline-2-sulfonic acid copolymers is developed. It is shown that the sulfonated polyaniline is capable of self-doping, as evidenced by higher stabilities of the structure and electric conductivity of the copolymers than those of the homopolymer. The mechanism of electric conductivity of the copolymers depends on the comonomer ratio in the feed. By means of the method of impedance spectroscopy, it is found that a decrease in electric conductivity with an increase in the degree of sulfonation is primarily due to reduction in the order of the copolymer structure.  相似文献   

7.
A conductivity equation based on the dual-disk microelectrode was derived. This electrode was used for in situ measurement of the conductivity of polyaniline. Some factors such as electrochemical potential, solution pH, scan rate and over-oxidation, which influence the conductivity of polyaniline, were conveniently controlled by this electrode. Experimental results proved that this electrode is very useful for measuring the relative conductivity in situ and studying the conducting mechanism of conductive polymers.  相似文献   

8.
A remarkable change in the conductivity of a polyaniline (PAN) Langmuir monolayer in the conducting state, as a function of surface pressure, has been observed using scanning electrochemical microscopy (SECM). The film conductivity, as expressed by the SECM current response of a redox mediator, was measured in-situ in a Langmuir film balance. The conductivity of the film increases significantly with surface pressure, above a threshold value of ca. 20 mN m-1.  相似文献   

9.
金玉红  王莉  尚玉明  高剑  李建军  何向明 《化学通报》2014,77(11):1045-1053
超级电容器具有功率密度高、充放电速度快、循环寿命长和维护成本低的特点,在电动车动力电池领域具有潜在的应用前景。超级电容器性能主要由其电极材料所决定。聚苯胺易合成、理论比容量高,而且导电性能优异,作为超级电容器电极材料有很高的应用价值。但是,在长期使用过程中,它的体积容易发生膨胀或收缩,循环寿命差。为了解决这个问题,将聚苯胺与石墨烯复合可以扬长避短,充分利用两者之间的协同效应,赋予复合材料优异电化学电容性能。本文综述了超级电容器用石墨烯-聚苯胺复合材料的制备方法,包括原位聚合法、油水界面合成法、电化学合成法、层层自组装法等;提出了三维网状石墨烯和对石墨烯-聚苯胺复合材料进行改性来提高复合材料的电化学电容性能的思路。  相似文献   

10.
氧化剂对聚苯胺性质的影响   总被引:4,自引:0,他引:4  
当过硫酸铵与苯胺的摩尔量之比为1∶1至2∶1时,化学合成的聚苯胺具有高的产率,电导率也较高,过多的过硫酸铵存在,使聚苯胺的电导率明显下降,这是由于它氧化了不同的中间体使产物不同,及聚苯胺被进一步氧化而造成的。各种强的氧化剂虽能提高电化学合成的聚苯胺的电极电位,但都使它的电导率和电化学活性显著降低,这仅是由于聚苯胺的进一步氧化所引起的。为了保持聚苯胺高的电化学活性,应避免它与强氧化剂共存。  相似文献   

11.
水性聚苯胺纳米线超级电容器电极材料   总被引:1,自引:0,他引:1  
使用"假高稀"方法,分别以过硫酸铵、硝酸铁和三氯化铁为氧化剂,含有1个乙氧基基团的酸性磷酸酯为质子酸,经过原位聚合制备了直径分别为78~90 nm、18~30 nm和16~25 nm水分散性聚苯胺纳米线.聚苯胺膜的电导率分别为18,32和35 S cm-1,比表面积为65,70和82 m2g-1.该聚苯胺纳米线能够很好地分散在水中,是一种环境友好型超级电容器电极材料.该电极材料在1 mol L-1四乙基氟硼酸/碳酸丙烯酯非水性电解液中,在-1~1 V扫描范围内,以0.4 A g-1的放电速率下,分别得到了110,140和152 F g-1的比容,比电容与材料的比表面积和电导率有关,随着比表面积以及电导率的增大而增大.聚苯胺纳米线电极材料有较高的充放电效率(大于98%),表明了它们有很好的电化学可逆性.  相似文献   

12.
Redox conducting polymers “Wires” have been widely used as a electron mediators between enzyme active sites and electrode surfaces in electrochemical biosensors. We report that a peroxidase is able to generate a molecular wire through its own enzymatic catalyzed reaction. The catalytic reaction is the polymerization of aniline to form conducting polyaniline. The polyaniline molecular wire is then capable of transducing the enzyme’s catalytic turnover into an electrochemical signal. In effect we demonstrate the selective bridging of the gap between nano and macroscales in a functional fashion (electrical conductivity) using the catalytic capabilities of the nanostructure.  相似文献   

13.
Three nanosized polyaniline (PAn) powders doped with ionic liquid and dodecyl benzene sulfonic acid (DBSA) or hydrochloric acid have been prepared for the first time in an ionic liquid-water emulsion system. The oil-phase ionic liquid is used as both a monomer solvent and doped counterion. The effects of different counterions on the properties (molecular weight, electrical conductivity, glass transition temperature, electrochemical activity) of PAn are investigated. PAn codoped with 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid and DBSA shows the highest molecular weight (81 104 g mol?1), the highest electrical conductivity (1.85 S cm?1), the lowest glass transition temperature (181°C) and the highest redox reaction current density; PAn doped with an ionic liquid only exhibits the lowest conductivity (0.0018 S cm?1) and a lower redox reaction current density. PAn codoped with ionic liquid and HCl shows higher conductivity. They also exhibit good electrochemical stability and charge-discharge performance. These indicate that codoping of different counterions under acidic conditions could improve the degree of oxidation and doping ratio of PAn and could result in high electrical conductivity and good electrochemical properties.  相似文献   

14.
A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well‐defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g?1 and a high electric conductivity of 0.125 S cm?1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.  相似文献   

15.
循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察   总被引:1,自引:0,他引:1  
在含有0.2 mol.L-1苯胺的0.5 mol.L-1H2SO4溶液中,以扫描速度50 mV.s-1,扫描电位为-0.1~0.9 V,采用循环伏安法(CV),在金属Ti基体上,通过控制扫描方式分别得到了颗粒状、纤维状及管-片状的苯胺聚合产物,分析了形成不同形貌聚苯胺的原因,并通过扫描电子显微镜(SEM)、循环伏安法和电化学阻抗谱(EIS)对不同形貌聚苯胺的结构和性能进行了表征.结果表明,不同形貌聚苯胺的形成是由于聚苯胺的成核及生长模式不同,而无论何种形貌的聚苯胺膜都具有很大的比表面积和良好的导电性能,其中,管-片状聚苯胺的膜层阻抗最小,导电性能最好.  相似文献   

16.
IntroductionInthepastdecade,conjugatedconductingpolymerslikepolyaniline,polythiopheneandpolypyrolehavereceivedconsiderableate...  相似文献   

17.
通过真空抽滤的方法制备碳纳米管纸,并对其进行循环伏安电化学氧化处理.以该电化学氧化处理的碳纳米管(CV-CNT)纸为基体,采用电化学聚合沉积聚苯胺(PANI),随后吸附石墨烯(GR),制备具有三明治夹心结构的碳纳米管/聚苯胺/石墨烯(CV-CNT/PANI/GR)复合纳米碳纸.该结构外层为GR,内层由PANI包裹的CNT形成网络骨架,充分发挥三者各自优势构建柔性电极材料.用场发射扫描电镜(FE-SEM)、透射电子显微镜(TEM)、拉曼光谱对其形貌与结构进行表征,并测试其电化学性能.研究发现:PANI呈纳米晶须状,并均匀包裹在CV-CNT表面;该复合碳纸具有良好的电容特性、大电流充放电特性以及良好的循环稳定性能.电流密度为0.5A·g-1时,比电容可达415F·g-1;20A·g-1时仍能保持106F·g-1的比电容.由于GR的保护作用,1000次循环之后较CV-CNT/PANI保持更高的有效比电容.该CV-CNT/PANI/GR复合碳纸展现出在高性能超级电容器柔性电极材料的潜在应用价值.  相似文献   

18.
β-萘磺酸掺杂聚苯胺纳米粒子的固相反应法制备及其表征   总被引:5,自引:0,他引:5  
利用固相反应法制备了 β 萘磺酸掺杂的聚苯胺纳米粒子 ,并以红外光谱 (FTIR) ,扫描电子显微镜(SEM) ,透射电镜 (TEM) ,X 射线衍射 (XRD)以及粉末微电极等测试方法对其进行了表征 .结果表明 ,固相反应法合成的 β 萘磺酸掺杂聚苯胺粒子直径为 30~ 5 0nm ,聚苯胺分子链排列有序 ,晶化率较好 .粉末微电极的循环伏安测试表明 ,β 萘磺酸掺杂聚苯胺有较好的电化学活性 .  相似文献   

19.
导电高聚物聚2,5-二甲基苯胺的化学合成与特性   总被引:2,自引:0,他引:2  
报道了聚2,5-二甲基苯胺(PDMeAn)的化学合成,并用标准四探针方法测定其电导率,以FTIR、UV-Vis吸收光谱、元素分析和CV法对其性质进行了研究,PDMeAn的结构与聚苯胺和聚2,5-二甲氧基苯胺的结构类似,是由其单元通过氮原子(N)在对位上键合而成,本征态的PDMeAn能溶于多种有机溶剂,如CH2Cl2、CHCl3、DMSO、DMF等。  相似文献   

20.
A new, convenient and economical method was established firstly, which took loaded polyaniline (PANI) carbon paper as the working electrode to real‐time characterize and analyze the electrochemical properties of the PANI synthesized by emulsion polymerization in constant magnetic field (MF, 0.4 T). The characterization results of the electrochemical properties of the PANI had been proved by contrast analysis of the thermal stability of conductivity, FT‐IR, XRD and TGA of the PANI. The experimental results of cyclic voltammogram, AC impedance, Tafel curve and electrochemical stability showed that the PANI synthesized in the presence of the MF had larger redox current, smaller charge resistance, higher corrosion potential and better electrochemical stability. The PANI thermal stability of conductivity had been measured in the temperature range from 20 to 140°C, and the results showed that the PANI synthesized in the presence of the MF had better thermal stability of conductivity. The results of FT‐IR, XRD and TGA indicated that the characteristic peaks of FT‐IR spectra of the PANI synthesized in the presence of the MF shifted to the lower wavenumbers, and its crystallinity and thermal stability were also improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号