首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5–7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.  相似文献   

2.
Marine diatom, strain JPCC DA0580, and marine green microalga strain NKG400014 were selected as high neutral lipid-producers from marine microalgal culture collection toward biodiesel production. These strains were tentatively identified as Navicula sp. and Chlorella sp., respectively, by 18S rDNA analysis. Growth and lipid accumulation conditions of both strains were analyzed by changing nutrient concentrations in growth media and initial illuminance intensity. The highest productivity of fatty acid methyl ester (FAME) reached to 154 mg/L/week for NKG400014 and 185 mg/L/week for JPCC DA0580. Gas chromatography/mass spectrometry analysis indicates that FAME fraction from NKG400014 mainly contained 9-12-15-octadecatrienoate (C18:3) and that from JPCC DA0580 mainly contained methyl palmitate (C16:0) and methyl palmitoleate (C16:1). Furthermore, calorimetric analysis revealed that the energy content of strain was 4,233?±?55 kcal/kg (i.e., 15.9?±?0.2 MJ/kg) for NKG400014 and 6,423?±?139 kcal/mg (i.e., 26.9?±?0.6 MJ/kg) for JPCC DA0580, respectively. The value from JPCC DA0580 was equivalent to that of coal. The strains NKG400014 and JPCC DA0580 will become a promising resource that can grow as dominant species in the open ocean toward production of both liquid and solid biofuels.  相似文献   

3.

Exploring indigenous microalgae capable of producing significant amounts of neutral lipids through high-throughput screening is crucial for sustainable biodiesel production. In this study, 31 indigenous microalgal strains were isolated from diverse aquatic habitats in KwaZulu-Natal, South Africa. Eight superior lipid-producing strains were selected for further analysis, based on Nile red fluorescence microscopy screening. The microalgal isolates were identified to belong to the genera Chlorella, Neochloris and Chlamydomonas via morpho-taxonomic and molecular approach by 18S rRNA gene sequencing. Chlorella vulgaris PH2 had the highest specific growth rate (μ) and lowest doubling time of 0.24 day−1 and 2.89 ± 0.05 day−1, respectively. Chlorella vulgaris T4 had the highest biomass productivity of 35.71 ± 0.03 mg L−1day−1. Chlorella vulgaris PH2 had the highest lipid content of 34.28 ± 0.47 and 38 ± 9.2% (dcw) as determined by gravimetric analysis and the sulfo-phospho-vanillin (SPV) method, respectively. Chlorella vulgaris PH2 exhibited a high content of saturated fatty acids, while Chlorella sp. T4 exhibited a high total content of saturated and monounsaturated fatty acids with a low content of polyunsaturated fatty acids. The preponderance of neutral lipids suggests that Chlorella sp. T4 is a suitable candidate for biomass feedstock for biodiesel production.

  相似文献   

4.
Producing biodiesel from microalgae grown in wastewater is environment-friendly and cost-effective. The present study investigated the algae found in wastewater of a local dairy farm for their potential as biodiesel feedstocks. Thirteen native algal strains were isolated. On the basis of morphology and 16S/18S rRNA gene sequences, one strain was identified to be a member of cyanobacteria, while other 12 strains belong to green algae. After screening, two Scenedesmus strains out of the 13 microalgae isolates demonstrated superiority in growth rate, lipid productivity, and sedimentation properties, and therefore were selected for further scale-up outdoor cultivation. Both Scenedesmus strains quickly adapted to the outdoor conditions, exhibiting reasonably good growth and strong anti-contamination capabilities. In flat-plate photobioreactors (PBRs), algal cells accumulated predominantly neutral lipids that accounted for over 60% of total lipids with almost 70% being triacylglycerol. In addition, Scenedesmus obliquus had a high content of monounsaturated fatty acids, of which the amount of oleic acid (C18:1) was up to 27.11%. Based on these findings, the dairy farm wastewater-isolated Scenedesmus strains represent promising sources of low-cost, high-quality oil for biofuel production.  相似文献   

5.
Microalgae is a rich source of polyunsaturated fatty acid. This study was conducted to identify and isolate microalgal strain with the potentials for producing polyunsaturated fatty acids (PUFAs) and determine its cytotoxic effect on some cancer cells. The algal strain (Chlorella sp. S14) was cultivated using modified BG-11 media, and algal biomass obtained was used for fatty acid extraction. Gas chromatographic–mass spectrometry was used to identify and quantify the levels of the fatty acid constituents. The total content of monounsaturated fatty acids (1.12%) was low compared to polyunsaturated fatty acids (PUFAs) (52.87%). Furthermore, n-3 PUFAs accounted for (12.37%) of total PUFAs with the presence of α-linolenic acid (2.16%) and cis-11,14,17-eicosatrienoic acid (2.16%). The PUFA-rich extract did not exhibit a cytotoxic effect on normal cells. Treatment with the PUFA-rich extract (150 µg/mL) significantly reduced cell viability in MCF-7 (31.58%) and A549 (62.56%) cells after the 48 h treatment. Furthermore, treatment of MCF-7 with fatty acid extracts (125 and 150 µg/mL) showed a significant reduction in MDA levels, increase in catalase activities and decrease in GSH level compared to untreated cells. However, a slight decrease in MDA level was observed in A549 cells after the 48 h treatment. There are no significant changes in catalase activities and GSH level in treated A549 cells. However, a slight reduction of NO levels was observed in treated MCF-7 and A549 cells. These results indicate the potentials of PUFA-rich extracts from Chlorella sp. S14 to reduce viability and modulate redox status in A549 and MCF-7 cells.  相似文献   

6.
Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.  相似文献   

7.
In this study, 97 microalgal strains purchased from algae bank and 50 microalgal strains isolated from local waters in Minnesota were screened for their adaptability growing on a 20-fold diluted digested swine manure wastewater (DSMW). A pool of candidate strains well adapted to the DSMW was established through a high-throughput screening process. Two top-performing facultative heterotrophic strains with high growth rate (0.536?day?1 for UMN 271 and 0.433?day?1 for UMN 231) and one strain with high omega-3 unsaturated fatty acid (EPA, 3.75?% of total fatty acids for UMN 231) were selected. Subsequently, a sequential two-stage mixo-photoautotrophic culture strategy was developed for biofuel and animal feed production as well as simultaneous swine wastewater treatment using above two strains. The maximal biomass concentration and lipid content at the first and second stages reached 2.03?g/L and 23.0?%, and 0.83?g/L and 19.0?% for UMN 271 and UMN 231, respectively. The maximal nutrient removals for total phosphorus and ammonia after second-stage cultivation were 100 and 89.46?%, respectively. The experiments showed that this sequential two-stage cultivation process has great potential for economically viable and environmentally friendly production of both renewable biofuel and high-value animal feed and at the same time for animal wastewater treatment.  相似文献   

8.
Cultivation is the most expensive step in the production of biodiesel from microalgae, and substantial research has been devoted to developing more cost-effective cultivation methods. Plant hormones (phytohormones) are chemical messengers that regulate various aspects of growth and development and are typically active at very low concentrations. In this study, we investigated the effect of different phytohormones on microalgal growth and biodiesel production in Chlamydomonas reinhardtii and their potential to lower the overall cost of commercial biofuel production. The results indicated that all five of the tested phytohormones (indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted microalgal growth. In particular, hormone treatment increased biomass production by 54 to 69 % relative to the control growth medium (Tris–acetate–phosphate, TAP). Phytohormone treatments also affected microalgal cell morphology but had no effect on the yields of fatty acid methyl esters (FAMEs) as a percent of biomass. We also tested the effect of these phytohormones on microalgal growth in nitrogen-limited media by supplementation in the early stationary phase. Maximum cell densities after addition of phytohormones were higher than in TAP medium, even when the nitrogen source was reduced to 40 % of that in TAP medium. Taken together, our results indicate that phytohormones significantly increased microalgal growth, particularly in nitrogen-limited media, and have potential for use in the development of efficient microalgal cultivation for biofuel production.  相似文献   

9.
There are numerous strains of Chlorella with a corresponding variety of metabolic pathways. A strain we previously isolated from wastewater in northern Sweden can grow heterotrophically as well as autotrophically in light and has higher lipid contents under heterotrophic growth conditions. The aims of the present study were to characterize metabolic changes associated with the higher lipid contents in order to enhance our understanding of lipid production in microalgae and potentially identify new compounds with utility in sustainable development. Inter alia, the amino acids glutamine and lysine were 7-fold more abundant under heterotrophic conditions, the key metabolic intermediate alpha-ketoglutarate was more abundant under heterotrophic conditions with glucose, and maltose was more abundant under heterotrophic conditions with glycerol than under autotrophic conditions. The metabolite 3-hydroxy-butyric acid, the direct precursor of the biodegradable plastic PHB (poly-3-hydroxy-butyric acid), was also more abundant under heterotrophic conditions. Our metabolomic analysis has provided new insights into the alga’s lipid production pathways and identified metabolites with potential use in sustainable development, such as the production of renewable, biodegradable plastics, cosmetics, and nutraceuticals, with reduced pollution and improvements in both ecological and human health.  相似文献   

10.
South Africa has a rich microalgal biodiversity which has the potential to be used for renewable bio-fuel production in the region. Bioprospecting for oleaginous microalgae in KwaZulu Natal Province, South Africa, resulted in the establishment of a microalgal culture collection system for alternative energy research in the country. A potential hyper-lipid-producing Chlorella spp. strain was isolated, purified, and cultured in supplemented post-chlorinated wastewater for biomass and lipid production at the laboratory scale under batch mode. The microalgal strain was cultivated in different strengths of BG-11 media supplemented with wastewater from a local municipal domestic wastewater treatment plant. The Chlorella spp. was grown using ambient dissolved carbon dioxide in shake flasks under photosynthetically active radiation (±120 μmolm−2s−1). Microalgal biomass and lipid productivity were monitored at 24-h intervals in the batch mode. The microalgal biomass was analyzed by direct light microscopy and indirectly by spectrophotometry at 600 nm, and the lipids were extracted and quantified. The growth rate of the Chlorella spp. was enhanced in post-chlorinated wastewater supplemented with 5 mM NaNO3 with maximal biomass productivity. A dramatic increase in lipid yield was achieved with the post-chlorinated wastewater supplemented with 25 mM NaNO3. Low dosages of free chlorine were found to enhance microalgal growth. These findings serve as a basis for further scale-up trials using municipal wastewater as a medium for microalgal biomass and lipid production.  相似文献   

11.
Aerial algae are considered to be highly tolerant of and adaptable to severe conditions including radiation, desiccation, high temperatures, and nutrient deficiency, compared with those from aquatic habitats. There are considerable variations in the fatty acid (FA) composition of aerial microalgae from dry environments. A new species with a high lipid level was found on concrete surfaces and was identified as Coccomyxa sp. KGU-D001 (Trebouxiophyceae). This study characterized its FA content and profile in a bath culture. The alga showed a constant specific growth rate (0.26 day?1) ranging in light intensity from 20 to 80 μmol photons m?2 s?1. The algal cells started to form oil bodies in the early stationary phase of growth, and oil bodies occupied most of the cells during the late stationary phase when the cells accumulated 27 % total fatty acids (TFA). The process of lipid body formation accumulating large amounts of triacylglycerols (TAG) appeared to be very unusual in response to stress conditions persisting for a relatively long culture time (50 days). This study could indicate that aerial microalgae will be a candidate for biodiesel production when a new cultivation method is developed using extreme stresses such as nutritional deficiency and/or desiccation.  相似文献   

12.
Chlorella is one of the most well-known microalgal genera, currently comprising approximately a hundred species of single-celled green algae according to the AlgaeBase. Strains of the genus Chlorella have the ability to metabolize both inorganic and organic carbon sources in various trophic modes and synthesize valuable metabolites that are widely used in many industries. The aim of this work was to investigate the impact of three trophic modes on the growth parameters, productivities of individual cell components, and biochemical composition of Chlorella sorokiniana, Chloroidium saccharofilum, and Chlorella vulgaris cells with special consideration of protein profiles detected by SDS-PAGE gel electrophoresis and two-dimensional gel electrophoresis with MALDI-TOF/TOF MS. Mixotrophic conditions with the use of an agro-industrial by-product stimulated the growth of all Chlorella species, which was confirmed by the highest specific growth rates and the shortest biomass doubling times. The mixotrophic cultivation of all Chlorella species yielded a high amount of protein-rich biomass with reduced contents of chlorophyll a, chlorophyll b, carotenoids, and carbohydrates. Additionally, this work provides the first information about the proteome of Chloroidium saccharofilum, Chlorella sorokiniana, and Chlorella vulgaris cells cultured in molasses supplementation conditions. The proteomic analysis of the three Chlorella species growing photoheterotrophically and mixotrophically showed increased accumulation of proteins involved in the cell energy metabolism and carbon uptake, photosynthesis process, and protein synthesis, as well as proteins involved in intracellular movements and chaperone proteins.  相似文献   

13.
This study is concerned with a novel mass microalgae production system which, for the first time, uses “centrate”, a concentrated wastewater stream, to produce microalgal biomass for energy production. Centrate contains a high level of nutrients that support algal growth. The objective of this study was to investigate the growth characteristics of a locally isolated microalgae strain Chlorella sp. in centrate and its ability to remove nutrients from centrate. A pilot-scale photobioreactor (PBR) was constructed at a local wastewater treatment plant. The system was tested under different harvesting rates and exogenous CO2 levels with the local strain of Chlorella sp. Under low light conditions (25 μmol·m-2s-1) the system can produce 34.6 and 17.7 g·m-2day-1 biomass in terms of total suspended solids and volatile suspended solids, respectively. At a one fourth harvesting rate, reduction of chemical oxygen demand, total Kjeldahl nitrogen, and soluble total phosphorus were 70%, 61%, and 61%, respectively. The addition of CO2 to the system did not exhibit a positive effect on biomass productivity or nutrient removal in centrate which is an organic carbon rich medium. The unique PBR system is highly scalable and provides a great opportunity for biomass production coupled with wastewater treatment.  相似文献   

14.
Microalgae have tremendous potential as a renewable feedstock for the production of liquid transportation fuels. In natural waters, the importance of physical associations and biochemical interactions between microalgae and bacteria is generally well appreciated, but the significance of these interactions to algal biofuels production have not been investigated. Here, we provide a preliminary report on the frequency of co-occurrence between indole-3-acetic acid (IAA)-producing bacteria and green algae in natural and engineered ecosystems. Growth experiments with unicellular algae, Chlorella and Scenedesmus, revealed IAA concentration-dependent responses in chlorophyll content and dry weight. Importantly, discrete concentrations of IAA resulted in cell culture synchronization, suggesting that biochemical priming of cellular metabolism could vastly improve the reliability of high density cultivation. Bacterial interactions may have an important influence on algal growth and development; thus, the preservation or engineered construction of the algal–bacterial assembly could serve as a control point for achieving low input, reliable production of algal biofuels.  相似文献   

15.
This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m?2 s?1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m?2 s?1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.  相似文献   

16.
Ettlia oleoabundance (formerly known as Neochloris oleoabundance) is an attractive candidate for biodiesel production because of its high lipid accumulation, and it’s taking the majority of the attention among the strains of Ettlia genus; however, potential of the other genus members is unknown. An indigenous strain from Salda Lake (South West Turkey) identified by 18S rDNA sequencing as Ettlia texensis (GenBank accession no: JQ038221), and its fatty acid and carotenoid compositions under phototrophic and mixotrophic conditions was investigated to evaluate the potential of the strain for commercial uses. A threefold increase was observed in total lipid content (total fatty acids; from 13 % to 37 %) in mixotrophic culture respect to the phototrophic growth conditions. The oleic acid (C18:1) and alpha-linolenic acid (18:3) were the major unsaturated fatty acids accounting for 40 % and 13.2 % of total fatty acids in mixotrophic culture, respectively. Carotenoid analyses of the mixotrophic culture revealed the metabolite canthaxanthin, a commercially valuable carotenoid used mainly for food coloring, was the major constituent among other pigments. The possible use of E. texensis in biotechnological applications is discussed.  相似文献   

17.
Microalgae were selected and isolated from acid mine drainage in order to find microalgae species which could be cultivated in low pH condition. In the present investigation, 30 microalgae were isolated from ten locations of acid mine drainage in South Korea. Four microalgae were selected based on their growth rate, morphology, and identified as strains of KGE1, KGE3, KGE4, and KGE7. The dry biomass of microalgae species ranged between 1 and 2 g L?1 after 21 days of cultivation. The growth kinetics of microalgae was well described by logistic growth model. Among these, KGE7 has the highest biomass production (2.05?±?0.35 g L?1), lipid productivity (0.82?±?0.14 g L?1), and C16–C18 fatty acid contents (97.6 %). These results suggest that Scenedesmus sp. KGE 7 can be utilized for biodiesel production based on its high biomass and lipid productivity.  相似文献   

18.
Direct acid methylation was examined as a means for both analysis of fatty acid content in microalgal cells and biodiesel production without pretreatment. Microalgal cells of Chlamydomonas reinhardtii and Dunaliella tertiolecta were prepared and examined. It appeared that direct acid methylation extracted higher fatty acid content than the solvent-based Soxhlet extraction process. It also revealed that the latter was prone to extract a significant amount of nonlipid hydrophobic impurities, including hydrophobic proteins and phytol-type compounds, while direct methylation produces essentially pure ester product. This work demonstrates that direct acid methylation provides superior fatty acid extraction, promising an efficient process for either quantification of lipid content or production of biodiesel.  相似文献   

19.
Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h−1), had biomass productivity of 33.98 ± 0.02 mg L−1 day−1. Proteins were the most abundant macromolecule in the biomass (32.83–57.94%, g g−1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.  相似文献   

20.
Three cyanobacterial and microalgal cultures such as consortium of Leptolyngbya sp. and Planktothrix sp. (Type I), Tetraspora sp. NITD 18 (Type II), and consortium of Chlorella sp. and Synechococcus sp. (type III) were chosen for the growth in both BG-11 and synthetic coke-oven wastewater (STCW). Maximum productivities of protein (75.63 (mg/L)/day, lipid (13.96 (mg/L)/day) were obtained in BG-11 medium for culture type II and that for carbohydrate (86.25 (mg/L)/day) was obtained with Type I. However, in STCW, maximum productivities were obtained as carbohydrate: 75.55 (mg/L)/day (Type III), protein: 57.67 (mg/L)/day (Type III), and lipid: 12.51 (mg/L)/day (Type I). Maximum yield was obtained as follows: carbohydrate - 146.47 mg/g and 122.26 mg/g (Type II), protein - 435.24 mg/g and 537.05 mg/g (Type II), and lipid - 111.45 mg/g and 217.47 mg/g (Type I) in BG-11 and STCW solutions, respectively. Artificial Neural Network-Genetic algorithm (ANN-GA) was used for modeling and optimization to get maximum outputs. The aim is selection of the suitable culture for the production of macromolecules under naïve and stressed environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号