首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the Breit-Wigner-Fano (BWF) line shape in the Raman spectra of carbon single-wall nanotubes (SWNTs) dispersed in aqueous suspensions. Bundling and electronic effects are studied by comparing undoped SWNTs (C-SWNTs) to boron-doped nanotubes (B-SWNTs) in a variety of different surfactant solutions. For SWNTs dispersed with nonionic surfactants that are less effective in debundling than ionic surfactants, the Raman spectra retain a large BWF feature. However, we demonstrate that even for SWNTs dispersed as isolated nanotubes by ionic surfactants the BWF feature may be present and that the intensity of the BWF is highly sensitive to the specific surfactant. In particular, surfactants with electron-donating groups tend to enhance the BWF feature. Also, modification of the SWNT electronic properties by boron doping leads to enhanced surfactant dispersion relative to undoped C-SWNTs and also to modification of the BWF feature. These observations are in agreement with reports demonstrating an enhancement of the BWF by bundling but also agree with reports that suggest electron donation can enhance the BWF feature even for isolated SWNTs. Importantly, these results serve to caution against using the lack or presence of a BWF feature as an independent measure of SWNT aggregation in surfactant dispersions.  相似文献   

2.
Electron spin resonance and Overhauser‐enhanced magnetic resonance imaging studies were carried out for various concentrations of 14N‐labeled 3‐carbamoyl‐2,2,5,5‐tetramethyl‐pyrrolidine‐1‐oxyl in pure water. Overhauser‐enhancement factor attains maxima in the range of 2.5–3 mm concentration. The leakage factor showed an asymptotic increase with increasing agent concentration. The coupling parameter showed the interaction between the electron and nuclear spins to be mainly dipolar in origin. The electron spin resonance parameters, such as the line width, line shape and g‐factor, were determined. The line width analysis confirms that the line broadening is proportional to the agent concentration, and also the agent concentration is optimized in the range of 2.5–3 mm . The line shape analysis shows that the observed electron spin resonance line shape is a Voigt line shape, in which the Lorentzian component is dominant. The contribution of Lorentzian component was estimated using the winsim package. The Lorentzian component of the resonance line attains maxima in the range of 2.5–3 mm concentration. Therefore, this study reveals that the agent concentration, line width and Lorentzian component are the important factors in determining the Overhauser‐enhancement factor. Hence, the agent concentration was optimized as 2.5–3 mm for in vivo/in vitro electron spin resonance imaging and Overhauser‐enhanced magnetic resonance imaging phantom studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Electronic paramagnetic resonance (EPR) and conductivity of pristine and iodine-doped PPMQ were studied. The pristine polymer EPR signal exhibited a Lorentzian line shape. Unpaired spin density measurements indicated that the spin concentrations of the undoped polymer lie in the range of one spin per 150–190 repeat units at room temperature. The peak-to-peak width doubled, the line shape became asymmetric and the spin concentration in the polymer increased slightly after doping with iodine. EPR saturation experiments show that the spin lattice relaxation time T1 is sensitive to trace impurity. Considerable reduction of T1 after doping with iodine shows strong coupling between the spin system and N-iodonium nucleus. Conductivity increases up to 5 orders of magnitude by iodine doping; at room temperature, the best value found was 0.017 S/cm. The activation energy for conductance after doping is about half that of pristine polymer.  相似文献   

4.
We designed and synthesized 4‐dodecyloxybenzenediazonium tetrafluoroborate ( 1 ), which preferentially reacts with metallic single‐walled carbon nanotubes (SWNTs) by kinetic control. We first determined the suitable experimental conditions for the preferential reaction of 1 with individually dissolved SWNTs by monitoring the decrease in absorbance for the metallic SWNT in the range of 400–650 nm in the absorption spectrum of the SWNTs. The reacted SWNTs were thoroughly rinsed with THF to obtain THF‐insoluble SWNTs. The Raman spectrum of the THF‐insoluble SWNTs showed a strong peak near 180 cm?1, which corresponds to a semiconducting breathing band. The metallic breathing bands (≈220 cm?1) and Breit–Wingner–Fano (BWF) modes (1520 cm?1) corresponding to the metallic SWNTs were much weaker than those of the pristine SWNTs. We also confirmed that metallic peaks in the range of 400–650 nm in the absorption spectrum of THF‐insoluble SWNTs that were individually dissolved in an aqueous micelle of sodium cholate were almost nondetectable. All the results indicate that the THF‐insoluble SWNTs are semiconducting.  相似文献   

5.
The thermal stability of oxidized single‐walled carbon nanotubes (SWNTs) with various degrees of oxidation was investigated. The oxidized SWNTs exhibited lower absorption and radial breathing mode (RBM) peaks and a higher intensity ratio of the D band to the G band (D/G) in their absorption and Raman spectra than those of the pristine SWNTs. After the thermal treatment, the D/G ratio of the oxidized SWNTs almost recovered its original intensity, regardless of the degree of oxidation. The absorption, photoluminescence (PL), and RBM peaks could not recover their original intensities when the oxidation degree was high. The results indicate that the elimination and decomposition reactions proceeded competitively depending on the degree of oxidation. In addition, a new PL peak was observed in the near‐infrared region, and the PL peak intensity increased with the subsequent thermal treatment. The theoretical calculations provided an insight into the possible pathways for the decomposition of oxidized SWNTs, showing that the O2 elimination and CO/CO2 evolution proceed competitively during thermal treatment.  相似文献   

6.
Drastic changes in the bonding are found in amorphous hydrogenated carbon nitride (a-CNx:H) film as a function of nitrogen concentration (or N/C ratio). The total C-sp3 fraction and hardness shows a sharp decrease (at N/C = 0.40) whereas optical band gap and resistivity shows a gradual increase as nitrogen concentration increases from 0.07 to 0.58. Raman spectrum of a-CNx:H film is fitted with both Gaussian (integrated intensity ratios are used instead of the height ratios of the Lorentzian (D mode)) and Breit–Wigner–Fano (BWF, G Mode) method for a comparative study of optical properties and crystalline size of the graphite domain. Visible Raman (488 nm) spectroscopy finds that the in-plane crystalline size of graphite domains (La) is increased (from 34 to 38 Å) with nitrogen incorporation. Optical band gap of a-CNx:H solid measured by means of ellipsometry differs from the one obtained from Raman spectroscopy. In addition, we propose a simple extension of the existing band gap model to obtain the optical band gap of a-CNx:H film from Raman spectrum. Our estimation agrees well with the experimental value.  相似文献   

7.
The homogeneous vibrational line shape of an adatom on a surface is determined by its interactions with other localized and delocalized modes of the adsorbate and substrate. These interactions include anharmonic bonds between the adatom and the surface, and also between the substrate atoms themselves at the adsorption site. The line width and frequency shift of the perpendicular vibrational mode of an adatom at a bridge site is calculated as a function of temperature, due to coupling to phonon modes of a semi-infinite elastic continuum. A self energy formulation is employed, using perturbative methods in a quantum field theory. The effects of anharmonicity of both the adsorption bonds and of the interatomic bonds between substrate atoms at the bridge site, on the vibrational line shape, are compared. Energy relaxation by two-phonon emission is found to describe well the temperature-dependent line width in the O/Cu(110) system.  相似文献   

8.
The electronic and structural properties of potassium hexaboride, KB(6), were examined by transport, magnetic susceptibility, EPR, and NMR measurements, temperature-dependent crystal structure determination, and electronic band structure calculations. The valence bands of KB(6) are partially empty, but the electrical resistivity of KB(6) reveals that it is not a normal metal. The magnetic susceptibility as well as EPR and NMR measurements show the presence of localized electrons in KB(6). The EPR spectra of KB(6) have two peaks, a broad ( approximately 320 G) and a narrow (less than approximately 27 G) line width, and the temperature-dependence of the magnetic susceptibility of KB(6) exhibits a strong hysteresis below 70 K. The temperature-dependent crystal structure determination of KB(6) shows the occurrence of an unusual variation in the unit cell parameter hence supporting that the hysteresis of the magnetic susceptibility is a bulk phenomenon. The line width DeltaH(pp) of the broad EPR signal is independent of temperature and EPR frequency. This finding indicates that the line broadening results from the dipole-dipole interaction, and the spins responsible for the broad EPR peak has the average distance of approximately 1.0 nm. To explain these apparently puzzling properties, we examined a probable mechanism of electron localization in KB(6) and its implications.  相似文献   

9.
The investigation of the vacuum thermal decomposition of polydiphenylenesulfophthalide at 100–530 °C showed that there are at least four main types of paramagnetic species (PMSs). The ESR spectrum of type I PMSs (120–250 °C) has a signal (g = 2.0028; ΔH ~1 mT) with a poorly resolved hyperfine structure (HFS) and an even number of lines. The electronic spectrum of these particles shows an absorption band at ~410 nm. These particles were assigned to “low-temperature” triarylmethyl-type radicals (TAMTR), which are apparently generated from dioxothioxanthene defect structures of the polymer. Type II PMSs (250–360 °C) give a smooth symmetrical ESR singlet (g = 2.0028; ΔH ~1 mT) and two absorption bands in the electronic spectrum at ~410 nm (strong band) and ~710 nm (weak band). Based on the results of calculations of electronic spectra for a series of model structures at the TD-DFT B3LYP/6-311G(d,p) level of theory, these PMSs were assigned to “high-temperature” TAMTR, which have a fluorenyl structure and are formed through the opening of the sulfophthalide ring. The maximum concentration of TAMTR II (~1020 spin g?1) is achieved at 320 °C. At T > 320 °C, type II radicals decay and type III radicals are generated. The latter are condensed aromatic species presumably having a phenalene structure. In the temperature range of 350–450 °C, the ESR line width and shape remain mainly unchanged, which attests to the retention of the dominant structure of the radicals. An increase in the thermal decomposition temperature to ~450 °C or above leads to a decrease in the ESR line width and a change in its shape from the Gaussian to Lorentzian type. This fact is an evidence of type IV paramagnetic species corresponding to even higher condensed aromatic structures.  相似文献   

10.
The presence of Stone‐Wales defects in single‐walled carbon nanotubes (SWNTs) not only leads to new interesting properties, but also provides opportunities for tailoring physical and chemical properties, and expands their novel potential applications. With a two‐layered ONIOM method, 1,3‐dipolar cycloadditions (1,3‐DCs) of a series of 1,3‐dipoles (azomethine ylide, nitrone, nitrile imine, nitrile ylide, nitrile oxide, and methyl azide) with Stone‐Wales defective SWNTs have been investigated theoretically for the first time. The calculated results demonstrate that the bond c , rather than the previously focused central bond a , exhibits the highest chemical reactivity among the defective sites. More interestingly, bond c is even more reactive thermodynamically and kinetically than the perfect C? C bond in SWNTs, suggesting the feasibility of utilizing 1,3‐DC reactions to separate and purify perfect and defective SWNTs. The reactivity order for nonequivalent bonds in defective sites is different from that of [1+2] cycloaddition, indicating that the reactivity order for nonequivalent bonds depends on the kind of the chemical reactions. Except azomethine ylide, nitrile ylide and nitrile imine are found to be good candidates for 1,3‐DCs upon Stone‐Wales defective SWNTs. The SW‐ A and SW‐ B defective SWNTs show different chemical reactivity toward nitrile ylide, making it possible to purify and separate the SW‐ A and SW‐ B defective SWNTs. The SWNT diameters are found to moderately influence the 1,3‐DC reactivity of both perfect and Stone‐Wales defective SWNTs, implying that Stone‐Wales defective SWNTs with different diameter would be separated experimentally through 1,3‐DC chemistry. The above 1,3‐DC reactivity can be well understood in terms of the distortion/interaction theory, which means that instead of frontier molecular orbitals interaction energy, the distortion energy controls the chemical reactivity. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures.  相似文献   

12.
Electron spin resonance (ESR) spectra of poly(acrylic acid) (PAA) γ-irradiated in air at room temperature and recorded at room temperature and at liquid-nitrogen temperature have been studied to identify the radiation products. The ESR spectra are composed of eight lines with hyperfine splittings of 23 ± 1 G and 11 ± 1 G. The method of least-squares total curve fitting, employing the Lorentzian line shape function, to the observed spectra enabled the assignment of the spectra. Computed spectra obtained by the superposition of a singlet and the spectra due to chain radicals are considered to give the best fits to the observed ESR spectra. The singlet is assigned to the radicals COOH, and the component 10-line spectra are assigned to the chain radicals CH3? CH? CH2 ~ and/or ~ CH2? CH? CH2 ~. The observed change in line shape with temperature of the ESR spectra is attributed to the hindered oscillations of the methyl groups about the Cα? Cβ bond axis of the chain radicals. The existence of the methyl groups is confirmed by the measurement of infrared absorption.  相似文献   

13.
The ab initio direct dynamics method at the G2//UQCISD/6-311 + G(d,p) level is employed to study the hydrogen abstraction reaction C2(3Πu)+H2 → C2H+H over a wide temperature range 100–4650 K. The barrier heights obtained for the forward and reverse reactions are 7.78 and 17.53 kcal/mol, respectively. Comparing with one recent experiment, the calculated forward rate constants over the temperature range 2580–4650 K are about 4.4–13.5 times greater and show a steeper temperature-dependent effect. This indicates that further experimental investigation on this simple radical reaction may still be desired. Finally, G2//UQCISD/6-311 + G(2df,2p) calculations are performed to test the reliability of the G2//UQCISD/6-311 + G(d,p) results.  相似文献   

14.
In a recent experiment the rovibrational spectrum of CO isotopomers in superfluid helium-4 droplets was measured, and a Lorentzian lineshape with a large line width of 0.024 K (half width at half maximum) was observed [von Haeften et al., Phys. Rev. B 73, 054502 (2006)]. In the accompanying theoretical analysis it was concluded that the broadening mechanism may be homogeneous and due to coupling to collective droplet excitations (phonons). Here we generalize the lineshape analysis to account for the statistical distribution of droplet sizes present in nozzle expansion experiments. These calculations suggest an alternative explanation for the spectral broadening, namely, that the coupling to phonons can give rise to an inhomogeneous broadening as a result of averaging isolated rotation-phonon resonances over a broad cluster size distribution. This is seen to result in Lorentzian lineshapes, with a width and peak position that depend weakly on the size distribution, showing oscillatory behavior for the narrower size distributions. These oscillations decrease with droplet size and for large enough droplets ( approximately 10(4)) the line widths saturate at a value equal to the homogeneous line width calculated for the bulk limit.  相似文献   

15.
The oxide spinel NiAl2O4 and spinel-type solid solutions Al2O3–NiAl2O4 (at Ni/Al=1:4, and Ni/Al=1:8) were prepared by controlled hydrolysis of mixed metal alkoxides, followed by calcination of the resulting gels. Powder X-ray diffraction showed that all samples prepared were single phase cubic materials having the spinel-type structure. The cubic lattice parameter, ao, was found to decrease gradually with increasing aluminium content of the mixed metal oxides. The specific surface area (determined by nitrogen adsorption at 77 K) was found to be in the range of 200–300 m2 g−1. The materials were found to be basically mesoporous, the most frequent pore radius being in the range 3.2–6.4 nm. IR spectroscopy of CO adsorbed at liquid nitrogen temperature gave a main band at 2186–2195 cm−1, which was assigned to the C---O stretching vibration of surface Al3+CO adducts where coordinatively unsaturated Al3+ ions act as Lewis acid centres.  相似文献   

16.
活性碳纤维阴极电芬顿反应降解微囊藻毒素研究   总被引:5,自引:0,他引:5  
以具有高比表面积的活性碳纤维作为阴极,通过电芬顿反应降解水中微囊藻毒素(MCRR,MCLR)的电化学方法系统考察了电流密度、pH值和Fe2+浓度等因素对微囊藻毒素降解效果的影响.实验结果表明,在Fe2+浓度为1.0mmol/L和电流密度为6.6mA/cm2条件下,电化学处理60min,MCRR(8.81mg/L)去除率为75%,MCLR(6.36mg/L)去除率为94%.证明过氧化氢可以通过电化学还原在活性碳纤维阴极表面高效产生,微囊藻毒素可被高效降解去除.  相似文献   

17.
The high-resolution infrared absorption spectrum of an equilibrium mixture of HCN and HCl in a static gas long-path absorption cell is recorded in the 2500–2900 cm−1 spectral region at 205 K. The spectrum shows rovibrational structure which has the typical appearance of a parallel band of a linear molecule and is assigned to the intramolecular H–Cl stretching vibration band ν2 of the linear HCN–H35Cl heterodimer. The rovibrational analysis of the band yield a band origin ν0 of 2779.0968(12) cm−1 together with a value for the upper-state rotational constant B′ of 0.067722(2) cm−1. The observed red shift of 107 cm−1 for the ν2 band of HCN–H35Cl relative to the H–Cl stretching vibration band of monomer H35Cl is in excellent agreement with results from the MP2/6−311++G** level of theory. The value of the upper-state rotational constant shows that the intermolecular hydrogen bond shortens by 0.022 Å upon intramolecular vibrational excitation of the ν2 mode.  相似文献   

18.
Jun Jiang  Wei Lu  Yi Luo   《Chemical physics letters》2004,400(4-6):336-340
We have applied the elastic-scattering Green’s function theory to study the coherent electron transportation processes in both metal–alkanedithiol–metal (gold–[S(CH2)nS]–gold, n = 8–14) and metal–alkanemonothiol–metal (gold–[H(CH2)nS]–gold, n = 8–14) at the hybrid density functional theory level. It is shown that the current decreases exponentially with the molecular length. At the low temperature limit the electron decay rate, β, for alkanedithiol junction is found to be around 0.30/CH2 at 1.0 V bias, much smaller than the calculated value of 0.60/CH2 for alkanemonothiol junction. The decay rate for alkanedithiol junction at the room temperature is neither sensitive to the activation of the Au–S stretching vibrational mode nor to the external bias. The calculated current–voltage characteristics and decay rates for both junctions are in excellent agreement with the corresponding experimental results.  相似文献   

19.
The temperature-dependent visible absorption and resonant Raman spectra of all-trans-β-carotene extremely diluted in dimethyl sulfoxide are investigated to clarify the effects of temperature on conjugated polyenes. The visible absorption and Raman spectra are found to blueshift with increasing temperature. The blueshift in polyenes is attributed to the decrease in the liquid density and the concomitant decrease in the refractive index by the Lorentz–Lorenz relation. We demonstrate that visible absorption is reproduced well by simple Franck–Condon analysis using a single Huang–Rhys factor over a temperature range. The analysis reveals features of temperature dependence in terms of important spectral parameters, such as line width, Raman scattering cross section and Huang–Rhys factor.  相似文献   

20.
The charge transfer induced lithiation of single-wall carbon nanotubes (SWNTs) was investigated by in situ monitoring by Raman spectroscopy as lithium was added incrementally to a dispersion of SWNTs in liquid ammonia. Charge transfer from liquid ammonia solvated lithium to the SWNTs led to intercalation of lithium into the SWNT ropes, as well as to the semi-covalent lithiation of the SWNTs. Raman spectra of the SWNTs recorded as lithium was added showed a 30 wavenumber downshift of the G band (1594 cm−1) with the concomitant appearance of a new peak at 1350 cm−1 that was assigned as the signature of the lithiated SWNTs. Addition of 1-iodododecane to the lithiated SWNTs resulted in the covalent attachment of dodecyl groups. The intercalation of lithium throughout the SWNT ropes led to complete dodecylation of all individual SWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号