首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
This paper describes the synthesis, characterisation and application of a very sensitive electrochemical sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWCNTs) decorated with homogeneously distributed spherical gold nanoparticles (AuNPs). These AuNPs presented diameters ranging from 2 to 10 nm. The AuNPs were prepared directly on the MWCNTs’ surface via a synthesis using HAuCl4 and citric acid as the reducing agent. The resulting material (Au/MWCNTs) was characterised by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and Raman spectroscopy. The developed Au/MWCNTs sensor was used in the determination of nitric oxide (NO) in phosphate buffer solution at pH 4.4 by differential pulse voltammetry. In the potential window between 0.5 and 0.65 V, a well-defined oxidation peak was observed, whose height was proportional to the NO concentration in the solution. The Au/MWCNTs-modified electrode exhibited high sensitivity for the determination of nitric oxide, with the limit of detection being 0.21 nmol L?1 (S/N?=?3). No significant interference was detected for nitrite and CO2 in the NO detection. Our study demonstrated that the resultant Au/MWCNT-modified electrode can be used for nitric oxide detection in the presence of ascorbic acid, dopamine and uric acid, being potentially useful for determinations of NO in real samples. Figure
?  相似文献   

2.
The influence of annealing on the microstructure and mechanical properties of β-form isotactic polypropylene (iPP) was investigated via in situ synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Transition of β-iPP to α-iPP was investigated via recrystallization at high annealing temperatures (T a?>?120 °C). And crystallinity, crystal sizes, and long period of ordered structure increased with increasing annealing temperature. Abrupt changes were found in both mechanical properties and structural features at the same T a range (~120 °C). The in situ synchrotron SAXS and WAXD shows that the destruction of b phase at yielding and after yielding should account for the ductility of β-iPP. The thermodynamics and kinetics of annealing were investigated with DSC and X-ray synchrotron experiments. A characteristic annealing time was investigated, which measures the rate of phase evolution in annealing of β-iPP. Eventually, a hypothesized model can be used to describe the property/structure relations during this process.  相似文献   

3.
Hyperglycemia-induced oxidative stress accelerates endothelial cell dysfunctions, which cause various complications of diabetes. The protective effects of 6,6′-bieckol (BEK), one of phlorotannin compound purified from Ecklonia cava against high-glucose-induced oxidative stress was investigated using human umbilical vein endothelial cells (HUVECs), which is susceptible to oxidative stress. High glucose (30 mM) treatment induced HUVECs’ cell death, but BEK, at concentration 10 or 50 μg/ml, significantly inhibited the high-glucose-induced cytotoxicity. Furthermore, treatment with BEK dose-dependently decreased thiobarbituric acid reactive substances (TBARS), intracellular reactive oxygen species (ROS) generation, and nitric oxide level increased by high glucose. In addition, high glucose levels induced the overexpressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor-kappa B (NF-κB) proteins in HUVECs, but BEK treatment reduced the overexpressions of these proteins. These findings indicate that BEK is a potential therapeutic agent that will prevent diabetic endothelial dysfunction and related complications.  相似文献   

4.
Crystallization behavior and morphology of PLA blended with 0.05–1.00 wt % loadings of poly(D-lactic acid) (PDLA) forming stereocomplex crystallites as in-situ nucleating agents, were studied using wideangle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and polarizing-light optical microscopy (POM). Blending PLA with small amount of PDLA does lead to formation of PLA stereocomplex (SC), although the PLA is a random copolymer. The in-situ formed SC crystal acted as nucleation sites in blends and accelerated the crystallization of PLA by decreasing the half-time (t1/2). The nucleation efficiency of PDLA obviously increased and the crystallization induction time decreased while the content of PDLA reached up to 0.20 wt %. While the content of PDLA is 0.2 wt %, the nucleation efficiency of PDLA is up to 43.8%, and the induction time decreased from 430 to 88 s. In addition, compared with pure PLA, t1/2 decreases from 15.1 to 3.5 min at Tc = 127.5°C while the amount PDLA is 1.0 wt %. The equilibrium melting temperature of PLA decreased from 187.2 to 181.2°C with the increase of PDLA content.  相似文献   

5.
Thermal decomposition of suitable coordination compounds may be used as efficient route for fabrication of semiconducting layers. A new potential CdS precursor—a cadmium complex with all-sulfur Cd-coordination sphere [Cd{μ-SSi(OBu t )3}(S2CNC4H8)]2 1—has been prepared, and its properties are investigated. The complex was obtained in the reaction between dimeric bis(tri-tert-butoxysilanethiolato)cadmium(II) [Cd{SSi(OBu t )3}2]2 and ammonium N,N-tetrametylene-dithiocarbamate and characterized by spectral methods (IR, UV–Vis, MS, and NMR). X-ray structure analysis revealed the complex as molecular and dimeric in solid state with each of chelating dithiocarbamate ligands bonded to one Cd center and sulfur atoms from two tri-tert-butoxysilanethiolato ligands bridging metallic centers and thus completing the CdS4 coordination sphere. Thin film of the precursor prepared on SiO2 substrates via spin-coating technique was analyzed by AFM. Its decomposition was studied by thermal analysis methods (TG, DSC, and TG-FTIR). After melting at 227 °C, [Cd{μ-SSi(OBu t )3}(S2CNC4H8)]2 undergoes endothermic decomposition leading to CdS as the only solid product further identified by XRD, EDS, FIR as hexagonal CdS form. Its morphology is characteristic and may be described as “micro-noodles”.  相似文献   

6.
Viscose fibers were treated with atmospheric pressure dielectric barrier discharge (DBD) plasma obtained in nitrogen in order to activate the fiber surface prior to sorption of the divalent ions Ca2+ and Cu2+. Methylene blue sorption was used for estimation of carboxyl group formation on the surface after DBD plasma treatment, through the degree of fabric staining (K/S). Sorption of divalent ions was performed from solutions of each individual ion and from solutions of calcium and copper in succession onto untreated and plasma-treated viscose samples. The quantity of sorbed metal was determined from the neutralization and iodometric titration method. Scanning electron microscopy coupled with energy dispersive X-ray analysis was used for fiber morphology and surface characterization before and after plasma treatment, and after metal ions sorption. Experiments revealed copper microparticles formation on the fiber surface when sorption of copper was performed on samples with bonded calcium. Further analysis confirmed that for growth of copper particles, both calcium ions and nitrogen DBD plasma pretreatments are necessary.  相似文献   

7.
A reaction between caffeine (caff) and dipicolinic acid = 2,6-pyridine dicarboxylic acid (pydc.H2) in water results in the formation of a cocrystal compound (pydc.H2.H2O)(caff) 1. The characterization of the resulting crystallohydrate is performed using 1H, 13C NMR and IR spectroscopy and X-ray crystallography. X-ray crystal structure analysis reveals the presence of both starting materials and water in the lattice. It also indicates intensive intermolecular H bonding interactions between carboxylic acid, caffeine, and water as well as π-π stacking between the pydc.H2 and caff rings as constituents of the cocrystal. The hydrogen bonding and non-covalent interactions play roles in the formation of the cocrystal. The crystal system is triclinic with the space group P-1 and two formula units per unit cell. The unit cell parameters are a = 6.906(2) Å, b = 8.451(3) Å, c = 14.68 (4) Å with α = 81.51(3)°, β = 78.47(3)°, and γ = 78.14(3)°. The final R value is 0.0660 for 7943 measured reflections.  相似文献   

8.
The reaction of different macrocyclic metallic tectons and dicarboxylic acid ligand yielded six new coordination polymers, namely, {[(NiL1)(4,4'-Bpdc)] ? DMF ? 2.5H2O} n (I), {[(NiL2)(4,4'-Bpdc)] ? DMF ? 2.5H2O} n (II), [(NiL3)2(4,4'-Bpdc)1.5][(NiL3)(4,4'-Bpdc)] ? ClO4 ? 28H2O (III), {[(NiL4)(4,4'-Bpdc)] ? 4H2O} n (IV), {[(NiL5)(4,4'-Tpdc)] ? 5H2O} n (V), {[(NiL3)(4,4'-Tpdc)]} n (VI) (L1 = 1,4,7,9,12,14-hexaaza-tricyclo[12.2.1.14.7]octadecane, L2 = 1,3,10,12,15,18-hexaazatetracyclo[16.2.1.112.15.04.9]docosane, L3 = 11-methyl-1,4,8,10,13,15-hexaaza-tricyclo[13.3.1.14.8]icosane, L4 = 1,3,10,12,16,19-hexaazate-tracyclo[17.3.1.1.12.16,04.9]tetracosane, L5 = 1,4,8,10,13,15-hexaaza-tricyclo[13.3.1.14.8]icosane, 4,4'-Bpdc = 4,4'-biphenyldicarboxylic acid and 4,4'-Tpdc = 4,4'-terphenyldicarboxylic acid) (CIF files CCDC nos. 1055545–1055550 for I–VI, respectively). Except for the different conformations of the macrocyclic metallic tectons or dicarboxylic acid ligands, complexes I–VI crystallized under the same environment, however, they exhibit diverse packing mode of infinite 1D coordination polymers, showing macrocyle or dicarboxylic acid ligand regulated self-assemble. The solid states UV-Vis for complexes I–VI also have been investigated.  相似文献   

9.
The single crystal X-ray diffraction (XRD) method was used to determine the structure of the [Cu(mi-tfac)2] (mi-tfac = MeC(O)CHC(NMe)CF3) complex at the temperature of 150 K. The crystallographic data are as follows: space group Pnna, a = 11.8798(16) Å, b = 12.0315(16) Å, c = 10.6259(14) Å, V = 1518.8(4) Å3, Z = 4, R = 0.0288. The structure is molecular, the coordination environment of copper in the molecule adopts a distorted tetrahedral geometry. The Cu–O and Cu–N distances are 1.9182(13) Å and 1.9610(16) Å respectively, the OCuN chelate angle is 94.18(5)°. The thermal properties of the compounds [Cu(mi-tfac)2] and [Cu(RC(O)CHC(NMe)R)2] (R = Me, t Bu) in the condensed phase have been studied by the methods of thermogravimetry and differential scanning calorimetry. The thermodynamic characteristics of the melting processes have been determined.  相似文献   

10.
The separation of lanthanides from calcium compounds in the form of oxalates from hot nitric acid solutions of Ln(NO3)3 and Ca(NO3)2 with the insertion of oxalic acid and a Ln2(C2O4)3 · nH2O crystal seed was studied by mass-spectrometric, atomic emission, microscopic, X-ray diffraction, and fluorescence analyses. The produced single-phase precipitate was found to contain an isomorphic impurity of La–Sm oxalates, while calcium oxalate remained in the hot nitric acid solution (95°С) saturated with oxalic acid. This facile and efficient method provides Ln2(C2O4)3 · nH2O (n = 9.5 mol) in one step in a 80.1 rel. % yield, with the major phase being at least 99.4 wt %. The unit cell parameters were determined for the crystals of the isomorphic lanthanide oxalate mixture: a = 11.243(2) Å, b = 9.591(2) Å, c = 10.306(2) Å; α = γ = 90°, β = 114.12(1)°; Z = 2; V = 1013.7(5) Å3.  相似文献   

11.
Poly(l-lactide) (PLLA) and functionalized multi-walled carbon nanotubes (f-MWNTs) were used to prepare PLLA/f-MWNTs composites via solution blending. The structure and morphology of f-MWNTs were characterized using FT-IR and SEM. The spherulitic morphologies, isothermal crystallization kinetics, and melting behavior of the resulting PLLA/f-MWNTs composites were investigated by POM and DSC, respectively. Both Avrami and Lauritzen–Hoffman kinetics models are used to quantitatively evaluate the crystallization half-time t 1/2, the nucleation constant K g, and the work of chain folding q of PLLA and its composites. Temperature modulated DSC was used to investigate the mechanism of overlapped endothermic and exothermic peaks of PLLA/f-MWNTs composites. The results indicated that the SiO2 coating on the MWNTs could react with coupling agent KH-550 leading to the formation of f-MWNTs, which can be evenly dispersed in PLLA matrix. A decrease of spherulite size and an increase of crystallization rate were observed from POM measurements for PLLA/f-MWNTs. The multiple melting behavior can be attributed to the melt-recrystallization process of PLLA/f-MWNTs composites at certain temperature.  相似文献   

12.
This study focuses on the preparation and properties of CeO2-SiO2 thin films with thickness ≤60 nm that can be used as protective coatings for solar cell panels and electrochromic counter electrodes. Thin-film CeO2-SiO2 systems on glass and quartz substrates, which are manufactured from film-forming solutions based on cerium(III) nitrate, salicylic acid, and tetraethoxysilane and thermally treated, are mixtures of cerium(IV) (cubic modification) and silicon(IV) (amorphous phase) oxides. The films synthesized are distinguished by a net structure and high visible transmittance (~90-100%). The morphology, phase composition, and optical properties of films were studied by X-ray diffraction, X-ray spectral microanalysis, scanning electron microscopy, spectrophotometry, and ellipsometry.  相似文献   

13.
The kinetics of small-angle X-ray scattering (SAXS) was assessed in the room temperature ionic liquid (RTIL)–x mol% H2O system, where the RTIL is N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF4]. During equilibration of a non-equilibrium state, the largest time evolution of SAXS was observed at approximately 90 mol% H2O. Above 85 mol% (x c), the SAXS intensity increased gradually for 24 h. For the larger q region, the prepeak and principal peak in X-ray diffraction patterns have no time dependence in the water-rich region (70–91 mol%). The long time relaxation process observed in SAXS was related to the outstanding pH oscillations at 90–95 mol% over several days in the [DEME][BF4]–water system. The x c for nonequilibrium anomalies is related to the equilibrated crossover concentration from 65–85 mol% (from SAXS) to 85–95 mol% (for the prepeak in X-ray diffraction) in the [DEME][BF4]–H2O system. Inside [DEME][BF4], the dynamic and static properties of hydrogen bonding of water changed drastically at x c.  相似文献   

14.
The composition of nitric acid solutions is investigated by means Raman spectroscopy (RS). The results are compared to critically selected data from other authors. The value of the thermodynamic dissociation constant in an aqueous nitric acid solution at 25°C (K a = \(\left[ {{H^ + }} \right]{\left[ {NO_3^ - } \right]_{\gamma '}}_ \pm ^2/\left[ {HN{O_3}} \right]{\gamma '_{HN{O_3}}}\) = 35.5 ± 1.5M) is determined by analyzing an extensive set of reliable and consistent literature and original data. Expressions for the dependences of the activity coefficient of undissociated HNO3 molecules (\({\gamma '_{HN{O_3}}}\)) and the mean ionic coefficient (\({\gamma '_ \pm } = \sqrt {{{\gamma '}_H} + {{\gamma '}_{NO_3^ - }}} \)) on the stoichiometric concentration of nitric acid in the range of 0–18 M are found.  相似文献   

15.
An extremely rapid green approach that generates bulk quantities of nanocrystals of noble metals such as palladium (Pd) and platinum (Pt) nanoparticles (NPs) with a small sizes of 3.8 ± 0.2 and 2.1 ± 0.4 nm by using Piper betle L. (Piperaceae) leaf extract is described. The highly stable and monodispersed Pd and Pt NPs were obtained at 10 min of continuous sunlight exposure. The bio-reduced Pd and Pt NPs were further characterized by using UV–Visible spectroscopy, transmission electron microscopy, selected area electron diffraction, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and cyclic voltammetry measurements. The particles, although discrete, were predominately associated with the P. betle plant proteins, which makes them stable over long time periods. These synthesized biogenic Pd and Pt NPs were evaluated for their acute toxicity studies against aquatic organism, Daphnia magna.  相似文献   

16.
A thermo-oxidative pre-treatment with chemical solutions is required in order to provide the adherence of inorganic semiconductor to the isotactic polypropylene (iPP) surface. A few thin films of iPP were treated with oxidizing solution at 90 °C. The crystalline properties were analyzed using XRD, and it had shown the presence of the α-monoclinic phases. The ATR-FTIR spectra had indicated that characteristic iPP peaks after thermo-oxidative chemical pre-treatment diminished sharply. Moreover, the new carbonyl groups (C = O) were observed, which signified oxidation. The UV–Vis spectra had showed a blue shift in the absorption edge, which corresponded to decrease in the optical band gap. The non-isothermal decomposition and crystallization kinetics of iPP films were studied and compared by means of thermogravimetric analysis and differential scanning calorimetric measurement. The values of the melting temperature T m and the crystallization temperature T c were found to be iPP surface structure and heating/cooling rate dependent. The activation energy of crystallization E c was determined.  相似文献   

17.
The present paper reports an investigation in which X-ray diffraction (WAXS and SAXS) patterns are applied to obtain qualitative information regarding supermolecular structure of drawn und undrawn samples of polypropylene fibres. The tensile properties, increase of long period, formation of microvoids and lamellar orientation upon drawing of the fibre have been brought into focus.  相似文献   

18.
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein–protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods. Figure
?  相似文献   

19.
Bergenia species (Saxifragaceae) are important sources of herbal medicines in Asia, mainly in Russia. Various plant parts are valued for their antibacterial, anti-inflammatory, antioxidant sand adaptogenic effect, and used for the dissolution of kidney and bladder stones. In this study a rapid reversed phase liquid chromatography (RP-HPLC) method has been developed for rapid screening and identifying of the main active components in leaf samples of Bergenia accessions. The main goal of this study was to develop an efficient method for the simultaneous identification and detection of arbutin, bergenin and gallic acid from Bergenia leaf samples, which were extracted with a methanolic solvent mixture [methanol:water = 1:1 (v/v)]. Chromatographic separations were performed on a reversed phase Luna C18(2)-HST HPLC column. This chromatographic system provided increased speed and efficiency for separations, without the need for ultra-high pressures. Reversed phase HPLC coupled with diode array detector method was used for the analysis. The method was validated using ICH guidelines. The level of gallic acid was significantly higher in Bergenia crassifolia samples compared to Bergenia cordifolia. However, the samples of the two Bergenia species did not differ substantially regarding the concentrations of arbutin and bergenin. The novel method proved to be fast and allowed sufficient separation and quantification of arbutin, bergenin and gallic acid, the most important bioactive compounds of Bergenia leaves; thus facilitating rapid screening and quality assessment of Bergenia samples of various botanical and geographical origins.  相似文献   

20.
Sol–gel transition behavior of ionic liquid gel based on poly (ethylene glycol) (PEG) and ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate [EMIM][EtSO4] has been investigated under the pressure up to 250 MPa. The Temperature versus Pressure phase diagram of PEG/[EMIM][EtSO4] gel is constructed, and it indicates that the melting point is an increasing function of pressure. Based on the phase diagram, the PEG/[EMIM][EtSO4] gels are prepared by cooling under the pressure of 300 MPa and atmospheric pressure, respectively. From the differential scanning calorimetry result of the recovered samples, it is found that PEG/[EMIM][EtSO4] gel prepared under high pressure has a higher crystallinity and smaller crystal size polymer network, comparing with under atmospheric pressure. The cyclic voltammograms and impedance spectra tests indicate that the PEG/[EMIM][EtSO4] gel prepared under high pressure exhibit higher ionic conductivity comparing with atmospheric pressure. It could be speculated these excellent properties might be attributed to the loose gel structure and high ionic density induced by high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号