首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Isothermal fiber-spinning results have been obtained for an 1850 ppm solution of polyisobutylene with a constant viscosity of 360 poise and a relaxation time of 0.824 s. The steady and dynamic shear properties of this Boger fluid are well described by the Oldroyd B constitutive equation for shear rates less than 10 s−1. Velocity profiles and spinline stresses were measured for a variety of fiber drawdown ratios, spinline lengths and for shear rates within the range of applicability of the Oldroyd B model. The results are compared with the theory developed in Part I [4], and excellent agreement is obtained when the effects of gravity were propertly taken into account. Indeed, this is the first time that the correct stress levels in the extensional flow of a highly viscoelastic polymer solution have been predicted from a knowledge of viscometric data alone using a simple three-parameter constitutive equation.  相似文献   

2.
3.
Birefringence in liquid polymers offers the possibility of obtaining information about stress in complex flows. In this work, this is done for extensional flows of polyisobutylene in a “breathing bubble” rheometer. In this type of rheometer, a bubble consisting of an incompressible, low-viscosity fluid (usually water) is injected into the sample with a nozzle. Expanding or collapsing the bubble by adding or removing water induces biaxial or uniaxial extension in the surrounding sample. The pressure difference between the bubble and the surroundings can be measured and compared to the predictions of constitutive equations. This measurement only gives one integral value for a complex flow history. In this paper, the birefringence around the bubble is measured in order to learn more about the flow. This is done by comparing pressure and birefringence results to those of standard constitutive equations for a polyisobutylene sample. A good agreement between the pressure and optical measurements and the theory is found with a single value of the stress-optical constant. Received: 25 June 1997 Accepted: 12 November 1997  相似文献   

4.
Over the last decade several international programmes have been developed around different standard fluids, one of which is the so-called S1 fluid. This is a solution of polyisobutylene in a mixed solvent and the aim of the programme has been to study the rheology of polymer solutions from the dilute solution to the melt. The focus of this paper will be on the flow visualisation of contraction flows of S1 through orifice dies and on the estimation of some of its extensional properties. The contraction ratios range from 24.4:1 and 124.3:1. The measured entry pressure drops will be correlated with contraction ratio and apparent wall shear rate. Experimental evidence will show that, when regarded as a function of wall shear rate, the entry pressure drops are independent of the contraction ratios. The flow fields for different contraction ratios, at any constant apparent wall shear rate, however, differ substantially. The evolution of the flow fields is monitored and it is shown that an initial increase in vortex size is followed by a slower decrease, this happening at a constant Weissenberg number. At the same Weissenberg number, small scale instabilities start occurring near the office. As the shear rate is increased further, these instabilities grow in size until, eventually, the flow structure is destroyed. An extensional viscosity is evaluated using a modified form of the Binding analysis for contraction flows and we show that the results are not only in qualitative agreement with those from other groups, but also that the analysis is able to predict exactly the onset of the aforementioned flow instabilities. Received: 20 March 1997 Accepted: 18 September 1997  相似文献   

5.
Based on the hypothesis of fluidity loss, which arises as a result of deformative orientation developing in polymer liquids at large elastic strains, the problem of the withdrawal of polymer solutions from a reservoir with a free liquid surface as well as the open-channel siphon problem have been treated theoretically. The assumption is made that after fluidity loss occurs the polymer solution deforms like a highly elastic cross-linked rubber. A quantitative comparison between the theoretical results and some experiments is also given.  相似文献   

6.
From stress-strain experiments in extensional and shearing flows, nonlinear strain measures and effective damping functions are derived for a polyisobutylene melt. The strain measures determined in planar extensional flow and in simple shear flow coincide. Experimental results are compared with predictions of two molecular theories, the Doi-Edwards model and the molecular stress function approach of Wagner and Schaeffer. Discrepancies between theories and experiment lead to a reconsideration of the classification of extensional flows. The symmetry of the flow field is identified and quantified as an important parameter influencing the strain measure, and a unifying strain measure for general extensional and shearing flows of polymer melts is presented.  相似文献   

7.
The extensional viscosity of some flexible chain polymers and a thermotropic liquid crystalline polymer was measured in uniaxial extensional flow at constant extension rate. Power law functions were found for the dependence of the extensional viscosity at constant accumulated strain on strain rate. The stress growth curves were compared with measurements in axisymmetric entry flow, where both elongation and shear occur. The comparison showed that the values of the extensional viscosity calculated from the measurements in the entry flow correspond to the ones calculated from the viscosity growth measured in uniaxial elongation and averaged over extensional strain equal to what is accumulated on the fluid as it flows from the barrel into the capillary.  相似文献   

8.
Flow induced crystallization of high density polyethylene has been studied in a two-phase flow system using low density polyethylene as the carrier phase. Extensional stresses were generated under slow flow conditions by either of two methods: one involving flow past a stationary seed, the other involving a droplet deformation and bursting mechanism. In both cases, oriented, fibrillar crystallization of the high density phase was observed optically and correlated with calculations indicating the presence of flow-induced extensional gradients. Morphological, thermal, and birefringence data indicate that the crystalline fibers produced are oriented and superheatable, and consist of a multifibrillar substructure. For fibers produced by the droplet bursting process a semi-quantitative agreement was found between fiber melting point and birefringence based on a simplified analysis for the bursting induced extensional flow. These results demonstrate that two-phase flows of crystallizable systems are a convenient means for studying the phenomenon of flow induced crystallization in polymer melts.  相似文献   

9.
The influence of extrusion under strong slip conditions on the extensional properties of linear low-density polyethylene was studied in this work. The material was extruded at two different temperatures under strong slip and no slip conditions, and was subsequently subjected to uniaxial elongational flow by means of a Rheotens device. Strong slip was evident through the elimination of sharkskin distortions and the stick-slip instability, as well as by the electrification of the extrudates. The extrudate swell was smaller in the presence of slip when comparing with no slip conditions at constant apparent shear rate, but it was found to be a unique function of the shear stress if comparison was performed at constant stress. The draw ratio and melt strength of the filaments obtained under slip conditions were larger compared to those without slip. In addition, draw resonance was postponed to higher draw ratios during the extrusion with strong slip at constant apparent shear rate. It is suggested that slip of the polymer at the die wall decreases the shear stress in the bulk, and therefore, restricts the disentanglement and orientation of macromolecules during flow, which subsequently produces the increase in draw ratio and melt strength during stretching.  相似文献   

10.
Summary An experimental investigation of the behavior of a polymer specimen for a constant stretch history has been conducted for both strip biaxial extensional flow and simple extensional flow. It had been shown previously that the stress functional of a non-Newtonian fluid under motion with constant stretch history reduces to a function of the threeRivlin-Ericksen tensors. Here it is shown that the second order approximation of a simple fluid is not capable of describing the steady-state viscosity in both types of flow under very slow motion. By considering higher orders, however, one may obtain the material constants necessary to describe steady-state non-Newtonian viscosity for both strip biaxial extensional flow and simple extension flow.Steady-state viscosities have been determined at various constant stretch histories using undiluted polyisobutylene.Newtonian viscosity in pure shear flow and simple extensional flow are also compared. To describe the transient state, a new model is used to incorporate elastic behavior into the theory.
Zusammenfassung Eine experimentelle Untersuchung des Verhaltens einer Polymerprobe unter konstanter Dehnungsgeschwindigkeit wurde für ein- und zweiachsige Beanspruchung durchgeführt. Es wurde früher gezeigt, daß das Spannungsfunktional einer nicht-Newtonschen Flüssigkeit unter konstanter Dehnung auf eine Funktion von dreiRivlin-Ericksen-Tensoren reduziert werden kann. Hier wird gezeigt, daß die Näherung zweiter Ordnung für eine einfache Flüssigkeit nicht fähig ist, die stationäre Viskosität in diesen beiden Verformungstypen mit sehr langsamer Bewegung zu beschreiben. Unter Berücksichtigung der Glieder höherer Ordnung kann man jedoch die zur Beschreibung der stationären nicht-Newtonschen Viskosität nötigen Materialkonstanten für beide Verformungsarten erhalten.Stationäre Viskositäten wurden für einige konstante Dehngeschwindigkeiten an unverdünntem Polyisobutylen bestimmt.Newtonsche Viskosität bei reiner Schubverformung und einfacher Dehnströmung wird auch verglichen. Ein neues Modell wird für die Beschreibung des nicht-stationären Zustandes benötigt, um elastisches Verhalten in die Theorie einzubeziehen.


This paper represents one phase of research performed by the Jet Propulsion Laboratory, California Institute of Technology sponsored by the National Aeronautics and Space Administration, Contract NAS7-100.

With 12 figures  相似文献   

11.
This paper reports the flow behaviour of Newtonian and Boger fluids through various axisymmetric contraction configurations by means of numerical predictions. A principal aim has been to evaluate the geometrical design choice of the hyperbolic contraction flow. The FENE-CR model has been used to reflect the behaviour of Boger fluids, with constant shear viscosity, finite (yet large) extensional viscosity and less than quadratic first normal stress difference. Numerical calculations have been performed on six different contraction configurations to evaluate an optimized geometry for measuring extensional viscosity in uniaxial extensional flow. The influence of a sharp or rounded recess-corner on the nozzle has also been investigated. Few commercial measuring systems are currently available for measurement of the extensional rheology of medium-viscosity fluids, such as foods and other biological systems. In this context, a technique based on the hyperbolic contraction flow would be a suitable alternative. The pressure drop, the velocity field, the first normal stress difference and the strain rate across the geometry have each been evaluated for Newtonian and Boger fluids. This numerical study has shown that the hyperbolic configuration is superior to the other geometry choices in achieving a constant extension rate. In this hyperbolic configuration, no vortices are formed, the measuring range is broader and the strain rate is constant throughout the geometric domain, unlike in the alternative configurations tested. The difference between sharp and rounded recess-corner configurations proved to be negligible and a rise in excess pressure drop (epd) for increasing deformation rates has been observed.  相似文献   

12.
An extensional viscometer is described in which the liquid filament leaving a capillary is subjected to a stretching deformation. In order to keep the flow rate through the capillary unaltered upon inception of stretching, the pressure head at the capillary entrance has to be reduced by an amount equal to the extensional viscoelastic stress at the capillary exit. This affords a simple means of measuring small fluid forces such as those that occur in the stretching of dilute polymer solutions. Since stretch rates can be obtained from a knowledge of the mass flow rate and the filament diameter profile, extensional viscosities can be computed. The efficacy of the technique is demonstrated by obtaining the anticipated results for Newtonian liquids.  相似文献   

13.
The motion of a slender body falling in quiescent polymer solutions is investigated experimentally. It represents the simplest model of motion of single fibers in the flow of fiber suspensions. The fall behavior in quiescent polymer solutions is compared with that in water. It is demonstrated that a slender body falling in Newtonian liquids rotates to adopt a horizontal orientation, whereas in non-Newtonian liquids it rotates towards a vertical orientation but for less concentrated solutions is not able to reach the vertical orientation and moves sideways with a constant orientation angle. The effects of shear thinning and elasticity on the motion of the body are discussed.  相似文献   

14.
A proposal has been made by Ferguson and Hudson (Eur. Polym. J., 29 (1993) 141–147; J. Non-Newtonian Fluid Mech., 52 (1994) 121–135) that three-dimensional representation of extensional flow data can be used to resolve apparent disagreements among the results from a variety of extensional flow experiments. A theoretical investigation of the procedure, which involves plotting a transient extensional viscosity against strain and time is carried out in this paper. We then seek to draw some conclusions about the validity and limitations of the approach. The method does not work for purely viscous non-newtonian liquids or for simple (co-rotational and upper convected) Maxwell models. However, the failure of results to lie close to a unique surface (for any particular material) is most marked in situations where our theoretical models are least reliable. More work, both experimental and theoretical, is required.  相似文献   

15.
We study, theoretically, the surface-tension-driven breakup of a long filament of fluid in a general linear flow, v = L·x. By analyzing the problem in a moving frame and assuming a circular cross section we find that the flow around the filament is an axisymmetric extensional flow with a time-dependent strength, which can be calculated from the rate of rotation of the filament and a contribution to the axial velocity which varies with the azimuthal angle. The analysis of the axisymmetric time-dependent case does not appear to be overly restrictive: the asymmetric variation may be small even in the case of a simple shear flow, in which the asymmetry is the greatest among all possible linear flows, depending on the initial orientation of the filament. We present calculations for two special cases: hyperbolic extensional flow and simple shear flow. The results indicate that under similar conditions, the drop fragments produced on breakup in simple shear flow are larger than those in hyperbolic extensional flow. The predictions of the theory also compare reasonably well with some previous experimental data in hyperbolic extensional flow and simple shear flow.  相似文献   

16.
A similarity solution of the Leslie-Ericksen equations for nematic liquid crystals is obtained for flow between converging and diverging planar walls (Jeffrey-Hamel flow). There are three regions in the flow: extensional or compressional flow near the centerline, shear near the wall, and a wall boundary layer in which elastic stresses control the transition from the wall-induced orientation to the bulk behavior. The boundary layer thickness is obtained in closed form; the scaling with the Ericksen number depends on whether or not the boundary layer extends into the region of extensional flow. Imposition of a magnetic field with an azimuthal component in a converging flow can result in a Freedericksz-like transition from radial to transverse orientation at the center line at a critical field strength. This transition provides a new means to measure the irrotational viscosity λ2.  相似文献   

17.
Suspensions in polymeric, viscoelastic liquids have been studied in uniaxial extensional flow. The fibre wind-up technique has been used for this purpose. The effects of particle size and particle volume fraction have been investigated, using monodisperse, spherical particles. The results have been compared with shear flow data on the same materials. The values of the relative extensional viscosities at low stretching rates are in agreement with the relative shear viscosities and relative moduli. This indicates that hydrodynamic forces are stronger than the particle interaction forces. At larger strain rates strain hardening occurs; it is suppressed when particles are added. Small aggregating particles reduce the strain hardening more strongly than larger particles; strain hardening can even be totally eliminated. When further increasing the stretching rate, hydrodynamic effects dominate again and the effect of particle size effect on strain hardening disappears.  相似文献   

18.
19.
A spinline-type extensional viscometer is described in which an innovative method of tensile stress measurement is employed. A limited amount of liquid flows through a vertical capillary at a constant flow rate under the influence of a constant pressure head. The drainage time decreases when the liquid stream leaving the capillary is stretched by the application of vacuum. These drainage times are measured in a manner similar to that used for intrinsic viscosity measurements. The measured difference in drainage times, with and without stretching, is trivially related to the extensional stress at the capillary exit, and this provides a very simple method of accurately determining fluid stretching forces having a magnitude as low as 10-4 N; stresses at other axial locations in the stretched liquid jet are obtained by means of a force balance in the usual manner. The validity of the proposed technique is demonstrated by obtaining the expected results for a Newtonian oil having a shear viscosity of 56.2 mPa-s. Also presented are preliminary data on polyethylene oxide-in-water solutions having an even lower shear viscosity.  相似文献   

20.
By generalizing the Doi-Edwards model to the Molecular Stress Function theory of Wagner and Schaeffer, the extensional viscosities of polyolefin melts in uniaxial, equibiaxial and planar constant strain-rate experiments starting from the isotropic state can be described quantitatively. While the strain hardening of four linear polymer melts (two high-density polyethylenes, a polystyrene and a polypropylene) can be accounted for by a tube diameter that decreases affinely with the average stretch, the two long-chain-branched polymer melts considered (a low-density polyethylene and a long-chain branched polypropylene) show enhanced strain hardening in extensional flows due to the presence of long-chain branches. This can be quantified by a molecular stress function, the square of which is quadratic in the average stretch and which follows from the junction fluctuation theory of Flory. The ultimate magnitude of the strain-hardening effect is governed by a maximum value of the molecular stress, which is specific to the polymer melt considered and which is the only free non-linear parameter of the theory. Received: 1 June 1999/Accepted: 24 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号