首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present total cross sections for single and double ionization of helium by antiproton impact over a wide range of impact energies from 10 keV/amu to 1 MeV/amu. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the ionized electrons. Excellent agreement is obtained between our calculations and experimental measurements of total single and double ionization cross sections at high impact energies, whereas for lower impact energies, some discrepancies with experiment are found. At an impact energy of 1 MeV we also find that the double-to-single ionization ratio is twice as large for antiproton impact as for proton impact, confirming a long-standing unexpected experimental measurement.  相似文献   

2.
H+ and He2+ impact single and double ionization cross sections of ground state lead atoms have been calculated in the binary encounter approximation. Calculations of direct double ionization cross sections have been performed in the modified double binary encounter model. The accurate expressions of σΔE (cross-section for energy transfer ΔE) and Hartree-Fock velocity distributions for the target electrons have been used throughout the calculations. Contributions to double ionization from Auger effect following ionization of inner shells have been considered in the present work. Our H+ impact single and double ionization cross sections are in good agreement with the experimental observations. In calculations of He2+ impact cross sections, the present theoretical approach shows limited success in the experimentally investigated region (50–350 keV amu-1).  相似文献   

3.
The time-dependent close-coupling method is used to study the single photon double ionization of C2+ in support of possible experiments at FLASH/DESY using an EBIT. Energy and angle differential cross sections are calculated to fully investigate the correlated motion of the two photoelectrons. Single energy differential as well as total cross sections are calculated for different incident photon energies in the range of 125–225 eV. Good agreement is found between our results and available R-matrix results for the double ionization of C2+. The study is also extended to the double photoionization along the Be-like isoelectronic sequence (Be-F5+), where good agreement is found when compared with available theoretical calculations and experimental measurements.  相似文献   

4.
In this paper total cross sections (Q T ) for electron impact on HCl and HBr are reported over a wide energy range from circa 0.1 eV to 2 keV. At impact energies below the ionization energy, the R-Matrix method is employed using Quantemol-N software whilst above the ionization energy the spherical complex optical potential (SCOP) method is used. It is shown that the two methods provide complimentary cross sections where they overlap. These calculations are compared with experimental and theoretical results wherever available.  相似文献   

5.
陈展斌  马堃 《物理学报》2018,67(11):113401-113401
分别利用连续扭曲波方法和初态程函近似-连续扭曲波方法对质子碰撞电离氖原子1s,2s,2p壳层后随电离电子能量变化的单重微分散射截面(SDCS)和二重微分散射截面(DDCS)及总截面进行了计算,所得结果与部分实验数据符合得很好.详细探讨了各壳层SDCS和DDCS的细致结构以及质子碰撞的电离机制.结果表明,对于氖原子2p壳层,随着入射质子能量的增加,SDCS的区域变长,幅度减小,在低能区以软电离为主;而DDCS出现的峰均迅速减小.此外,分析了初态程函近似对SDCS和DDCS的影响,发现该效应对截面的影响在低能入射时非常明显,随着入射能量的增大,这种影响逐渐减弱.  相似文献   

6.
Theoretical studies of electron impact double ionization cross sections of Ne5+ and Ne6+ ions have been performed in the binary encounter approximation (BEA). Direct double ionization (DDI) has been investigated in the modified double binary encounter model. The K-shell ionization cross sections have been also calculated in the BEA to take into account the contributions to double ionization from the ionization-autoionization (IA) process. The effect of the Coulombic field of the target ion on the incident electron has been considered in the present work. Accurate expression of σ ΔE (cross section for energy transfer ΔE) and the Hartree-Fock (HF) velocity distributions for the target electrons have been used throughout the calculations. The present results are in overall moderate agreement with the experimental observations. Possible reasons behind the discrepancies between the theory and the experiment have been discussed.  相似文献   

7.
A time-dependent coupled-channel approach was used to calculate ionization, excitation, and energy-loss cross sections as well as energy spectra for antiproton and proton collisions with molecular hydrogen for impact energies 8?<?E?<?4000 keV.  相似文献   

8.
Ratios of double (KL) to single (K) ionization cross sections for proton and α-particle impact on vanadium are measured with velocities V = 0.53 to 1.7 (in units relative to the L-shell electron velocity) and are found to be reproduced by the recipe of McGuire and Richard.  相似文献   

9.
H+ impact single and He2+ impact single and double electron capture cross sections of magnesium atoms have been calculated in the modified binary encounter approximation (BEA). The accurate expressions of ion impact sDE\sigma _{\Delta {E}} (cross section for energy transfer DE\Delta E) and Hartree-Fock momentum distributions of the target electrons have been used throughout the calculations. On the basis of the present work it is concluded that inner shell captures by H+ and He2+ ions incident on magnesium atoms contribute partly to single electron capture and partly to transfer ionization cross sections. The calculated He2+ impact double electron capture cross sections of magnesium are in reasonably good agreement with the experimental observations. This indicates the success of the present theoretical approach in study of charge transfer cross sections of atoms as indirect mechanisms do not interfere with double electron capture processes in this case.  相似文献   

10.
利用连续扭曲波方法(CDW)和初态程函近似-连续扭曲波方法(CDW-EIS)对质子碰撞电离氖原子 壳层随电离电子能量的单重和二重微分散射截面及总截面进行了计算,与实验数据进行了比较,详细分析了曲线结构,比较了模型之间的差异,研究了初态程函近似对单重和二重微分散射截面的影响,并对其内部碰撞电离机制进行了探讨.研究发现,初态程函近似对各壳层电离截面有较大影响,这种影响随着入射质子能量的增大而越来越小.  相似文献   

11.
The relative intensities of the M 5 N and M 4 N satellites of Pb under electron bombardment of thick targets in the range of accelerating voltages U = 5?30 kV are experimentally investigated. Based on the previously proposed model of M X-ray emission, the relative intensities of these satellites are calculated using the total ionization cross sections of M subshells under electron impact found in different approximations. It is established that, among the models yielding analytical expressions for calculating total ionization cross sections, the model of classical binary collisions provides the best agreement with experimental data in the electron energy range under study. The parameters of the semiempirical Bethe formula for calculating the ionization cross sections of Pb M subshells under electron impact are determined.  相似文献   

12.
L K Jha 《Pramana》2002,59(3):515-524
Electron impact single and double ionization cross sections of gallium have been calculated in the binary encounter approximation using accurate expression for σΔ;E including exchange and interference as given by Vriens and Hartree-Fock velocity distributions for the target electrons throughout the calculations. It is concluded that the ionization of 3d shell contributes partly to single ionization and partly to double ionization. The results so obtained show reasonably good agreement with the experimental data.  相似文献   

13.
The absolute differential cross sections of scattering of hydrogen atoms resulting from an electron capture and an electron capture ionization are measured for collisions of 4.5- and 11-keV protons with argon and xenon atoms. The range of scattering angles is 0°–2°. From the scattering differential cross section found experimentally, the probabilities of single-electron capture and electron capture ionization as a function of the impact parameter are calculated. The dependences of the incident particle scattering angle on the impact parameter (deviation function) for interactions with Ar and Xe atoms are calculated in terms of classical mechanics using the Moliére—Yukawa potential to describe the interaction of atomic particles. Analysis is given to the probabilities of electron capture and electron capture ionization versus the impact parameter and to the distribution of the electron density on different electron shells in a target atom versus a distance to the core. It is concluded that only electrons from the outer shell of the target atom are involved in the process of electron capture ionization. The cross section of electron capture ionization is calculated in the proton energy range 5–20 keV.  相似文献   

14.
15.
The excitation of all ten levels of the neon 2p 53p configuration by proton impact (100 keV-1 MeV) has been investigated by the spectral analysis of photon emission. Absolute emission cross sections have been obtained by calibration with a standard light source. Cascade effects are shown to be very important especially in the case ofJ=1 levels. For the 3p(1 S 0) level, which we studied additionally for electron impact excitation (100 eV-1 keV), our experimental cross sections are compared with the first Born approximation. Furthermore the polarization of sixteen 3p—3s emission lines has been measured as a function of impact energy. The energy dependence of the line polarization is characterized by theJ quantum numbers of the atomic states involved in the respective transition. An anomalous polarization of all lines originating from the decay ofJ=1 levels has been found and is referred to dominant cascade effects.  相似文献   

16.
We have determined absolute charge transfer and fragmentation cross sections in He2++C60 collisions in the impact-energy range 0.1-250 keV by using a combined experimental and theoretical approach. We have found that the cross sections for the formation of He+ and He0 are comparable in magnitude, which cannot be explained by the sole contribution of pure single and double electron capture but also by contribution of transfer-ionization processes that are important even at low impact energies. The results show that multifragmentation is important only at impact energies larger than 40 keV; at lower energies, sequential C2 evaporation is the dominant process.  相似文献   

17.
丁丁  何斌  刘玲  张程华  王建国 《物理学报》2009,58(12):8419-8425
应用经典径迹Monte Carlo(CTMC)方法研究了He2+与H原子在等离子体环境下的碰撞电离过程,计算了在5—400 keV/u的能区随等离子体屏蔽作用变化的碰撞电离总截面和一阶微分截面.等离子体中带电粒子之间的相互作用采用Debye-Hückel模型来描述.由于等离子体屏蔽效应的存在,靶中束缚态电子能级及其经典微正则分布以及入射离子与靶电子的相互作用都发生了变化,而这些变化会直接影响碰撞电离过程.研究发现,碰撞电离总截面随等离子屏蔽的增加而增大,特别是在10 keV/u以下的低能区电离截面有量级的增加.对随能量变化的一阶微分截面,在低能碰撞过程中,屏蔽作用增加,微分截面呈量级增加,高能碰撞微分截面呈倍数增加.同时,屏蔽作用导致电离电子向高能方向移动,随着碰撞能量的增加两体碰撞机制的贡献越来越大,并在较高的出射电子能量出现了一个新的峰.对无屏蔽的自由原子碰撞过程,CTMC方法计算出的电离总截面在碰撞能量大于70 keV/u的较高能区在实验误差内与实验测量结果符合很好,而在较低的能区比实验值小30%—50%. 关键词: 重粒子碰撞电离 等离子体屏蔽效应 经典径迹Monte Carlo方法 Debye-Hückel模型  相似文献   

18.
Plane wave Born approximation with Coulomb, relativistic and exchange corrections is employed to obtain L1-, L2- and L3-subshell ionization cross sections of several atoms due to electron and positron impacts for projectile energy varying from the threshold of ionization to 60 times the threshold energy. Photoionization cross sections for all the three L-subshells of the atoms are also calculated using the hydrogenic approximation for the atomic wave functions. For L3-subshell the present cross sections due to electron impact are in good agreement with a number of experimental data for different atoms over the entire energy range investigated. For L1- and L2-subshells the present calculations yield qualitative agreement with the experimental data. The agreement between the present results and the limited experimental data for positron impact is also satisfactory. The hydrogenic approximation for the L-subshell photoionization is found to be good at small photon energies but it underestimates the cross sections at large photon energies.  相似文献   

19.
The cross beam method was used to measure double differential ionization cross sections for electron production by 200–500 keV protons incident on a molecular beam. The ejected secondary electrons were detected by an electron multiplier and an electrostatic 90 °-spectrometer which was movable in the scattering chamber from 18 °–155 ° with respect to the incident proton direction. After the elimination of disturbing electric and magnetic fields, electrons were measured at energies down to 1 eV. The absorption of the very slow electrons along their path through the spectrometer could be minimized by using a relatively low gas pressure in the scattering chamber of a few 10?5 Torr. The efficiency of the electron detector was determined with an electron source whose emission rate per solid angle was known. Absolute cross sections and their angular dependence were obtained by measuring the slow electrons—ejected with a relatively high rate—without the molecular beam; these data being used to normalize the electron spectra acquired with the molecular beam. Ionization cross sections with 300 keV protons incident on helium are discussed and except for the very slow electrons, a good agreement is found with results of Ruddet al.  相似文献   

20.
Single electron capture and single ionization total cross sections in collisions of proton with ethylene are calculated for an energy range 25 keV E 150 keV, using the classical trajectory Monte Carlo method. Multi-center model potentials are employed to represent the interaction of the active electron on each molecular orbital with the C2H4+_{4}^{+} core. The results are compared with experimental results for single electron capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号