首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is concerned with a formulation of anisotropic finite strain inelasticity based on the multiplicative decomposition of the deformation gradient F=FeFp. A major feature of the theory is its invariance with respect to rotations superimposed on the inelastic part of the deformation gradient. The paper motivates and shows how such an invariance can be achieved. At the heart of the formulation is the mixed-variant transformation of the structural tensor, defined as the tensor product of the privileged directions of the material as given in a reference configuration, under the action of Fp. Issues related to the plastic material spin are discussed in detail. It is shown that, in contrast to the isotropic case, any flow function formulated purely in terms of stress quantities, necessarily exhibits a non-vanishing plastic material spin. The possible construction of spin-free rates is discussed as well, where it is shown that the flow rule must then depend not only on the stress but on the strain as well.  相似文献   

2.
The analytical solution is derived for the plane strain stress field around a cylindrical void in a hexagonal close-packed single crystal with three in-plane slip systems oriented at the angle π/3 with respect to one another. The critical resolved shear stress on each slip system is assumed to be equal. The crystal is loaded by both internal pressure and a far-field equibiaxial compressive stress. The deformation field takes the form of angular sectors, called slip sectors, within which only one slip system is active; the boundaries between different sectors are radial lines. The stress fields are derived by enforcing equilibrium and a rigid, ideally plastic constitutive relationship, in the spirit of anisotropic slip line theory. The results show that each slip sector is divided into smaller regions denoted as stress sectors and the stress state valid within each stress sector is derived. It is shown that stresses are unique and are continuous within stress sectors and across stress sector boundaries, but the gradient of stresses is not continuous across the boundaries between stress sectors. The solution shows self-similarity in that the stresses over the entire domain can be determined from the stresses within a small region adjacent to the void by invoking certain scaling and symmetry properties. In addition, the stress state exhibits periodicity along logarithmic spirals which emanate from the void. The results predict that the mean value of in-plane pressure required to activate plastic deformation around a void in a single crystal can be higher than that necessary for a void in an isotropic material and is sensitive to the orientation of the slip systems relative to the void.  相似文献   

3.
A homogenization theory for time-dependent deformation such as creep andviscoplasticity of nonlinear composites with periodic internal structures is developed. To beginwith, in the macroscopically uniform case, a rate-type macroscopic constitutive relation betweenstress and strain and an evolution equation of microscopic stress are derived by introducing twokinds of Y-periodic functions, which are determined by solving two unit cell problems.Then, the macroscopically nonuniform case is discussed in an incremental form using thetwo-scale asymptotic expansion of field variables. The resulting equations are shown to beeffective for computing incrementally the time-dependent deformation for which the history ofeither macroscopic stress or macroscopic strain is prescribed. As an application of the theory,transverse creep of metal matrix composites reinforced undirectionally with continuous fibers isanalyzed numerically to discuss the effect of fiber arrays on the anisotropy in such creep.  相似文献   

4.
Experimental data are reported on isotactic polypropylene in multi-cycle uniaxial tensile tests where a specimen is stretched up to some maximum strain and retracted down to the zero minimum stress, while maximum strains increase with number of cycles. Fading memory of deformation history is observed: when two samples are subjected to loading programs that differ along the first n  1 cycles only, their stress–strain diagrams coincide starting from the nth cycle. Constitutive equations are developed in cyclic viscoelasticity and viscoplasticity of semicrystalline polymers, and adjustable parameters in the stress–strain relations are found by fitting the experimental data. Results of numerical simulation demonstrate that the model predicts the fading memory effect quantitatively. To confirm that the observed phenomenon is typical of semicrystalline polymers, experimental data are presented in tensile cyclic tests with large strains on low density polyethylene and compressive cyclic tests on poly(oxymethylene).  相似文献   

5.
The effect of material compressibility on the stress and strain fields for a mode-I crack propagating steadily in a power-law hardening material is investigated under plane strain conditions. The plastic deformation of materials is characterized by the J2 flow theory within the framework of isotropic hardening and infinitesimal displacement gradient. The asymptotic solutions developed by the present authors [Zhu, X.K., Hwang K.C., 2002. Dynamic crack-tip field for tensile cracks propagating in power-law hardening materials. International Journal of Fracture 115, 323–342] for incompressible hardening materials are extended in this work to the compressible hardening materials. The results show that all stresses, strains, and particle velocities in the asymptotic fields are fully continuous and bounded without elastic unloading near the dynamic crack tip. The stress field contains two free parameters σeq0 and s330 that cannot be determined in the asymptotic analysis, and can be determined from the full-field solutions. For the given values of σeq0 and s330, all field quantities around the crack tip are determined through numerical integration, and then the effects of the hardening exponent n, the Poisson ratio ν, and the crack growth speed M on the asymptotic fields are studied. The approximate behaviors of the proposed solutions are discussed in the limit of ν  0.5 or n  ∞.  相似文献   

6.
The mechanical characteristics of superplastic yttria-stabilized zirconia polycrystals have been analyzed as a function of stress, temperature and grain size. The evolution of the stress exponent n with stress found in high purity materials is similar to that observed in superplastic metals. True creep parameters can be ascribed to the deformation mechanism at high stresses. By contrast, the creep parameters exhibit a continuous evolution with stress, temperature and grain size at low stresses. The threshold stress formalism used in conventional and high strain rate superplastic metals accounts for the mechanical characteristics observed in fine-grained zirconia polycrystals.  相似文献   

7.
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom ωi are introduced in addition to the conventional three translational degrees of freedom ui. ωi is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l1. Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale.  相似文献   

8.
A new formulation of the equations of membrane theory in non-linear elasticity is described. It is based on the consistent use of certain conjugate variables averaged through the (undeformed) thickness of the thin shell which the membrane approximates. The deformation gradient is taken as the basic measure of deformation, and its average value as the membrane measure of deformation. It is shown that the average elastic strain energy can be regarded as a function of the average deformation gradient to within an error which is of the second order in a certain small parameter. Moreover, to the same order, the average strain energy is a potential function for the average nominal stress. This means that the averages of the conjugate variables (nominal stress and deformation gradient) are also conjugate.In terms of the average conjugate variables, the membrane equilibrium equations are obtained by averaging from the equilibrium equations of the full three-dimensional theory. Discussion of the order of magnitude of the errors involved in the membrane approximation is a feature of the analysis.The corresponding incremental equations are also derived as a prelude to their application in certain bifurcation problems. One such problem is examined in the companion paper (Part II) in which results for thick shells and membranes are compared.  相似文献   

9.
We study the behaviour of a single integral constitutive equation, capable of providing analytic expressions for the viscoelastic stress in extensional flows of a variety of deformation histories and geometries, ranging from uniaxial to equibiaxial. It is based on the use of a stress damping function, with a power-law dependence on the elongation, λ: h(λ) = 1/λn. The parameter n (0  n  2) signifies the nonlinear viscoelastic character of the material and, therefore, is an inverse measure of network connectivity strength of the underlying microstructure. This renders the constitutive approach applicable to incompressible polymers of a variable degree of branching, strain hardening and stress thinning behavior. Methods of connecting n with the macromolecular architecture and the alignment strength of the flow are also explored.  相似文献   

10.
Non-uniform plastic deformation of materials exhibits a strong size dependence when the material and deformation length scales are of the same order at micro- and nano-metre levels. Recent progresses in testing equipment and computational facilities enhancing further the study on material characterization at these levels confirmed the size effect phenomenon. It has been shown that at this length scale, the material constitutive condition involves not only the state of strain but also the strain gradient plasticity. In this study, C0 axisymmetric element incorporating the mechanism-based strain gradient plasticity is developed. Classical continuum plasticity approach taking into consideration Taylor dislocation model is adopted. As the length scale and strain gradient affect only the constitutive relation, it is unnecessary to introduce either additional model variables or higher order stress components. This results in the ease and convenience in the implementation. Additional computational efforts and resources required of the proposed approach as compared with conventional finite element analyses are minimal. Numerical results on indentation tests at micron and submicron levels confirm the necessity of including the mechanism-based strain gradient plasticity with appropriate inherent material length scale. It is also interesting to note that the material is hardened under Berkovich compared to conical indenters when plastic strain gradient is considered but softened otherwise.  相似文献   

11.
In order to represent the chemical ageing behaviour of rubber under finite deformations a three-dimensional theory is proposed. The fundamentals of this approach are different decompositions of the deformation gradient in combination with an additive split of the Helmholtz free energy into three parts. Its first part belongs to the volumetric material behaviour. The second part is a temperature-dependent hyperelasticity model which depends on an additional internal variable to consider the long-term degradation of the primary rubber network. The third contribution is a functional of the deformation history and a further internal variable; it describes the creation of a new network which remains free of stress when the deformation is constant in time. The constitutive relations for the stress tensor and the internal variables are deduced using the Clausius–Duhem inequality. In order to sketch the main properties of the model, expressions in closed form are derived with respect to continuous and intermittent relaxation tests as well as for the compression set test. Under the assumption of near incompressible material behaviour, the theory can also represent ageing-induced changes in volume and their effect on the stress relaxation. The simulations are in accordance with experimental data from literature.  相似文献   

12.
Song Xiang  Gui-wen Kang  Bin Xing 《Meccanica》2012,47(8):1913-1921
In the present paper, a nth-order shear deformation theory is used to perform the free vibration analysis of the isotropic plates. The present nth-order shear deformation theory satisfies the zero transverse shear stress boundary conditions on the top and bottom surface of the plate. Reddy??s third order theory can be considered as a special case of present nth-order theory (n=3). The governing equations and boundary conditions are derived by the principle of virtual work. The governing differential equations of the isotropic plates are solved by the meshless radial point collocation method based on the thin plate spline radial basis function. The effectiveness of the present theory is demonstrated by applying it to free vibration problem of the square and circular isotropic plate.  相似文献   

13.
The propagation of a three-dimensional shock wave in an elastic solid is studied. The material is assumed to be a simple elastic solid in which the Cauchy stress depends on the deformation gradient only. It is shown that the growth or decay of a discontinuity ψ depends on (i) an unknown quantity φ? behind the shock wave, (ii) the two principal curvatures of the shock surface, (iii) the gradient on the shock surface of the shock wave speeds and (iv) the inhomogeneous term which depends on the motion ahead of the shock surface and vanishes when the motion ahead of the shock surface is uniform. If a proper choice is made of the propagation vectorb along which the growth or decay of the discontinuity is measured, the dependence on item (iii) can be avoided. However,b assumes different directions depending on the choice of discontinuity ψ with which one is concerned and the unknown quantity φ? behind the shock wave on which one chooses to depend. As in the case of one-dimensional shock waves, the growth (or decay) of one discontinuity may not be accompanied by the growth (or decay) of other discontinuities. A universal equation relating the growth or decay of discontinuities in the normal stress, normal velocity and specific volume is also presented.  相似文献   

14.
An up-to-date approach to the phenomenon of rate sensitivity observed in f.c.c. metals is discussed. It is shown that the rate sensitivity of strain hardening, which so far has been neglected, plays an equal or even dominant role in an estimation of the total rate sensitivity. It is suggested that the presence of the rate sensitivity of strain hardening is developed by the athermal generation of structural defects (dislocations), while at the same time collision and partial annihilation of dislocations occurs with the assistance of thermal activation. These micromechanisms of plastic deformation are capable of developing so-called strain rate and temperature history effects. Some experimental evidence of strain rate history effects, for both polycrystals and monocrystals, are provided in this paper; they are discussed within the framework of instantaneous rate sensitivity versus rate sensitivity of strain hardening. Both rate sensitivities are reviewed within the framework of thermal activation strain rate analysis. Experimental data are provided for aluminium, copper and lead. They conclusively demonstrate the importance of rate sensitivity of strain hardening which is developed by dynamic recovery (annihilation of defects during plastic deformation).Some fundamentals of how to construct constitutive relations have been discussed on the basis that the total flow stress τ is the sum of the effective stress τ1 and the internal stress τμ. General relations for structural evolution have been analysed, which are able to describe strain rate and temperature history effects. On the basis of earlier results a general relationship for structural evolution has been proposed using the concept of the effective dislocation multiplication coefficient Meff. It is shown that an evolutionary relationship should be of differential type with generation and annihilation terms.Finally, some recommendations are provided as to constitutive modeling and future studies of both instantaneous rate sensitivity and rate sensitivity of strain hardening.  相似文献   

15.
A hyperelastic material is here said to be of class Hm if the elastic potential is a homogeneous function of order m + 1 in the components of the Lagrangian displacement gradient. It is shown that a single solution to a boundary value problem generates an infinite family of solutions to a family of related boundary value problems. Assuming that a solution to a boundary value problem exists, it is shown that it is unique provided that the material is stable in the sense of Hill in a deleted neighbourhood of the stress-free state. A minimum theorem concerning the strain energy and the virtual work of the prescribed forces is established for the equilibrium configurations, and a maximum theorem concerning the virtual work of the prescribed surface displacements and the complementary stress energy is established for compatible stress fields. As an application, upper and lower bounds are found for the torsional stiffness of a cylindrical bar of square cross section under infinitesimal deformation.  相似文献   

16.
Observations are reported on a medical grade of silicone elastomer in uniaxial tensile tests up to breakage of specimens, short-term relaxation tests, and cyclic tests with monotonically increasing maximum elongation ratios. Experimental data in cyclic tests demonstrate the fading memory phenomenon: stress–strain diagrams for two specimens with different deformation histories along the first n?1 cycles and coinciding loading programs for the other cycles become identical starting from the nth cycle. A constitutive model is developed in cyclic viscoplasticity of elastomers with finite strains, and its adjustable parameters are found by fitting the experimental data. Ability of the stress–strain relations to predict the mechanical response in cyclic tests with various deformation programs is confirmed by numerical simulation.  相似文献   

17.
When a body is subject to simple internal constraints, the deformation gradient must belong to a certain manifold. This is in contrast to the situation in the unconstrained case, where the deformation gradient is an element of the open subset of second-order tensors with positive determinant. Commonly, following Truesdell and Noll [1], modern treatments of constrained theories start with an a priori additive decomposition of the stress into reactive and active components with the reactive component assumed to be powerless in all motions that satisfy the constraints and the active component given by a constitutive equation. Here, we obtain this same decomposition automatically by making a purely geometrical and general direct sum decomposition of the space of all second-order tensors in terms of the normal and tangent spaces of the constraint manifold. As an example, our approach is used to recover the familiar theory of constrained hyperelasticity.  相似文献   

18.
An experimental study of the macroscopic plastic flow nonhomogeneity in the course of a uniaxial tensile test is conducted on several aluminum alloys, nickel and 4340 steel. It was observed that the plastic flow initiates throughout the entire gage length in a nonuniform fashion, so that the growth of the deformation in the middle of the gage is faster than it is at the edges. That initial strain rate gradient almost disappeared shortly after its evolution, and the strain rate through the entire gage length became about uniform. The plastic flow nonuniformity emerged again upon further stretching, producing a gradual acceleration in the middle of the gage with corresponding slowdown toward the edges. That final development of the strain rate gradient commenced well in advance of the load maxima and was the cause of the consequent neck formation in the middle portion of the gage. It is demonstrated that the origin of plastic flow nonhomogeneity stemmed from the second elastic strain component in the transverse direction and its gradient evolution along the reduced section upon loading. It is found empirically that acceleration in the strain rate in the middle part of the reduced section was accompanied by a reduction in the apparent strainhardening exponent,n, calculated from the stress/strain chart. The maxima in the apparent strain-hardening exponent,n, obtained from the common stress/strain charts can be used to indicate the strain rate gradient onset.  相似文献   

19.
A model and simulation method are developed for two-dimensional non-isothermal melt spinning of a visco elastic melt. The visco elastic stress is evaluated from a non-isothermal Giesekus constitutive equation developed by application of the pseudo-time method to the isothermal form of the model [J. Non-Newt. Fluid Mech. (2001)]. The crystallization kinetics is described with the model proposed by Nakamura et al. [J. Appl. Polym. Sci. 17 (1973) 1031], whereas the crystallization rate, which is a function of both temperature and molecular orientation, is evaluated according to the equation proposed by Ziabicki [Fundamentals of Fiber Formation, Wiley, New York, 1976]. The set of non-linear governing equations is solved by using the DEVSS-G/SUPG finite element method. Melt spinning is simulated for two different polymers: amorphous polystyrene and fast-crystallizing Nylon-6,6. The analysis demonstrates that although the kinematics in the thread-line are approximately one-dimensional, the radially non-uniform thermal history, caused by the leading order variation of the temperature gradient ∂T/∂r, gives rise to radially non-uniform visco elastic stresses. This stress gradient results in radially non-uniform molecular orientation and a strong radial variation in crystallinity for Nylon-6,6. The radially non-uniform stress profiles obtained from the simulations are in good agreement with experimental results for melt spinning of polystyrene. Simulations of Nylon-6,6 show that the thermally-induced crystallization depends strongly on the choice of the Avrami index n, and a sharp increase in crystallinity due to stress-induced crystallization is predicted only when the molecules are highly oriented in the drawing direction at high drawing speeds. The significant influences of visco elasticity, air drag, and operating conditions on non-isothermal melt spinning dynamics also are predicted.  相似文献   

20.
Materials get damaged under shear deformations. Edge cracking is one of the most serious damage to the metal rolling industry, which is caused by the shear damage process and the evolution of anisotropy. To investigate the physics of the edge cracking process, simulations of a shear deformation for an orthotropic plastic material are performed. To perform the simulation, this paper proposes an elasto-aniso-plastic constitutive model that takes into account the evolution of the orthotropic axes by using a bases rotation formula, which is based upon the slip process in the plastic deformation. It is found through the shear simulation that the void can grow in shear deformations due to the evolution of anisotropy and that stress triaxiality in shear deformations of (induced) anisotropic metals can develop as high as in the uniaxial tension deformation of isotropic materials, which increases void volume. This echoes the same physics found through a crystal plasticity based damage model that porosity evolves due to the grain-to-grain interaction. The evolution of stress components, stress triaxiality and the direction of the orthotropic axes in shear deformations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号