首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
升温与等温法非模型动力学研究环氧树脂固化反应   总被引:2,自引:0,他引:2  
基于DSC数据,采用以Vyazovkin积分法为基础的升温法非模型动力学和等温法非模型动力学对双酚A型环氧树脂E51/4,4′-二氨基二苯基砜(DDS)体系及多官能度环氧树脂AG80/DDS体系的固化过程进行了研究,并结合玻璃化转变温度的变化和原位红外测试技术,对比分析了升温与等温条件下的固化反应规律.结果表明,与传统的模型拟合法相比,非模型动力学更适合定量预测树脂固化反应过程,并能为固化过程中反应机理变化的研究提供重要依据;等温法非模型动力学能够更好地预测两种树脂体系在不同恒温条件下的固化反应历程,并且升温法与等温法非模型动力学所得到的反应活化能-固化度之间的变化关系不同,表明不同温度条件下树脂的反应机理不同,这与升温和恒温条件下玻璃化效应及环氧官能团的变化规律相吻合.  相似文献   

2.
用FTIR定量研究环氧树脂固化反应动力学制样方法的确定   总被引:2,自引:0,他引:2  
利用FTIR进行环氧树脂固化反应的动力学研究需要精确的样品制备方法,摸索到一套合适的样品制备方法。将KBr研成细粉,通过孔径为0.074mm筛子使粒子均匀,在120~150℃下加热24h后,取0.25g,放入红外压片模具,在压力为800MPa条件下加压时间5~10min,压制成厚度为0.08mm的透明均匀KBr盐片。将环氧树脂均匀涂在这种KBr盐片上,放入微型反应器中反应,之后一同放入FTIR仪中进行扫描,实验证明这种制样方法可以保证红外定量分析的可靠性。  相似文献   

3.
含联苯结构环氧树脂体系固化反应动力学研究   总被引:13,自引:0,他引:13  
用示差扫描量热仪(DSC)对含联苯结构环氧树脂(TMBP)/4,4′-二氨基二苯砜(DDS)固化体系的固化反应过程进行了分析,并用Kissinger和Ozawa方法分别求得体系固化反应的表观活化能ΔE为69.7和74.2kJ/mol,根据Crane理论计算得到该体系的固化反应级数n=0.89及在不同升温速率下的频率因子A,确定了使用DDS作为固化剂的固化反应条件.  相似文献   

4.
以自制的松香改性酚醛环氧树脂(RPAE)为对象,采用差示扫描量热法研究了其与4,4.二氨基二苯砜组成的体系(RPAE/DDS)的固化动力学,利用Kissinger方程计算得到体系的固化热约为109.29J/g,表观活化能为51.56kJ/mol,该体系反应级数为0.85,近似为1级反应,反应速率常数为2.69×10^4/s。采用Ozawa-Flynn-Wall方程分析,得到体系的表观活化能为70。1kJ/mol。  相似文献   

5.
FTIR法研究乙酸酚醛酯固化邻甲酚环氧树脂的反应动力学   总被引:6,自引:1,他引:6  
用FTIR原位测量技术研究了乙酸酚醛酯与邻甲酚环氧树脂在2-甲基咪唑存在下进行恒温固化反应的动力学,测定了固化反应的动力学参数,研究结果表明,固化反应是按照一级固化反应动力学进行的,根据羰基峰在固化反应前后的变化对固化反尖机理进行了初步探讨。  相似文献   

6.
一种液晶环氧树脂固化动力学FTIR研究   总被引:1,自引:0,他引:1  
应用示差扫描量热分析研究了含液晶基元的环氧化合物4,4‘-二(2,3-环氧丙氧基)偶氮苯与五种芳香胺类固化剂的固化行为,选择了4,4’-二氨基二苯甲烷为固化剂。确定了具体的固化条件并合成了液晶环氧树脂。根据环氧树脂自催化固化反应模型和氨基氢等活性假设,利用傅立叶变换红外光谱法研究了4,4‘-二(2,3-环氧丙氧基)偶氮苯/4,4’-二氨基二苯甲烷五氧树脂在100℃,120℃和155℃恒温国大化时,  相似文献   

7.
以咪唑为固化剂,对缩水甘油醚型、缩水甘油酯型环氧树脂(简称链型环氧树脂)及脂环环氧树脂的固化特征、固化动力学及反应活性进行了研究.DSC实验结果表明,固化过程均分两阶段进行,链型环氧树脂固化反应表观活化能低于脂环环氧树脂.各树脂第一阶段的表观反应活化能均低于第二阶段活化能.当脂环环氧树脂中混入不同比例的链型环氧树脂后,固化反应速率均较脂环环氧树脂单独固化时快,当链型环氧树脂量大于50%时,更为明显.  相似文献   

8.
树枝形大分子/环氧树脂体系固化反应动力学研究   总被引:3,自引:0,他引:3  
用示差扫描量热仪(DSC)对树枝形大分子PAMAM/双酚-A型环氧树脂体系的固化反应动力学过程进行了分析。通过Kissinger法求得体系固化反应的表观活化能ΔE为59.78kJ/mol,通过Crane法求得体系的固化反应级数n=0.91,并计算出了反应速率常数k和不同升温速率下的频率因子A。根据动态DSC数据确定体系合适的固化反应温度为80~90℃,后固化温度为140℃。  相似文献   

9.
 本文应用DSC和FTIR对2-乙基-4-甲基咪唑固化双酚A二缩水甘油醚型环氧树脂体系的固化反应机理和2-乙基-4-甲基咪唑固化双酚A二缩水甘油醚型、缩水甘油酯与脂环型环氧树脂体系的固化反应特征、动力学及其反应活性进行了研究.结果表明,双酚A二缩水甘油醚型环氧树脂/咪唑体系的固化反应是分两步独立进行的,第一步是加成反应,第二步是催化聚合反应.缩水甘油酯与脂环型环氧树脂(TDE-85)/咪唑体系的固化反应过程也分两步进行,第一阶段反应主要是缩水甘油酯型环氧基进行的加成反应和催化聚合反应,第二阶段主要是脂环型环氧基进行的加成反应.各体系第一阶段的表现反应活化能均低于第二阶段活化能.当TDE-85型环氧树脂中引入缩水甘油醚型环氧树脂后,固化反应速率均较TDE-85环氧树脂单独固化时快.  相似文献   

10.
丁腈羟增韧环氧树脂固化反应   总被引:2,自引:0,他引:2  
丁腈羟增韧环氧树脂固化反应李绍英**韩孝族*刘振海张庆余(中国科学院长春应用化学研究所长春130022)关键词丁腈羟,增韧环氧树脂,固化反应动力学,DSC1996-05-04收稿,1996-09-17修回**现在河北轻化工学院化工设计研究所工作环氧树...  相似文献   

11.
耐热芴型环氧树脂的非等温固化动力学   总被引:3,自引:0,他引:3  
合成了9,9’-二[4-(2,3环氧丙氧基)苯基]芴,并以4,4’-二氨基二苯砜胺为固化剂,用非等温DSC法研究了其固化动力学,用Flynn-Wall-Ozawa法和Friedman法确定了固化动力学参数,用动力学模拟推测了固化机理函数,并用TGA法对等温固化树脂的耐热性进行了表征。结果表明:双酚芴环氧固化反应的表观活化能约63.86 kJ/mol,扩散因子为3.80×104s-1,反应级数为1.57;固化反应为枝状成核的自催化反应;等温固化后的环氧树脂于400℃开始分解,700℃时残碳率为41.73%。  相似文献   

12.
将氢化双酚A与环氧氯丙烷反应合成了氢化双酚A型环氧树脂(HBPA-EP),产物分别用多元胺类或酸酐类固化剂固化,利用差示扫描量热分析(DSC)对固化反应特性进行了研究,得到了相应的固化条件、固化反应活化能和固化反应动力学方程等.结果表明,当分别采用1,3-环己二甲胺、液态聚酰胺、顺式六氢苯酐、甲基六氢苯酐固化HBPA-EP(环氧值为0.45)时,其固化条件分别为100℃、2h,145℃、4h,90℃、2h,120℃、4h,130℃、2h,150℃、4h,140℃、2h和160℃、4h,用这4种固化剂进行固化反应的表观活化能分别为50.62、56.88、74.56 kJ/mol和68.36 kJ/mol,其反应级数分别为0.886、0.901、0.915和0.905.  相似文献   

13.
采用高分子材料动态力学谱(TBA)和傅立叶变换红外光谱(FTIR)两种方法研究了双酚S/双酚A环氧树脂/芳胺固化体系的固化过程。探讨了在双酚S环氧树脂(BPSER)和双酚A环氧树脂(BPAER)以不同质量比与固化剂4,4'- 二氨基二苯甲烷(DDM)组成固化体系中,所得固化产物的相容性。结果表明,在一个很宽的BPSER/BPAER比例范围,其固化产物具有良好的相容性。  相似文献   

14.
有机硅改性双酚f环氧树脂固化反应   总被引:1,自引:1,他引:1  
洪晓斌  谢凯  肖加余 《应用化学》2007,24(11):1263-0
双酚f环氧树脂;有机硅;改性;固化反应动力学;性能  相似文献   

15.
环氧树脂水基化改性及其固化   总被引:2,自引:0,他引:2  
介绍了环氧树脂水基化化学改性的方法 ,以及环氧树脂水基系统的固化机理和所用的固化剂  相似文献   

16.
几种聚醚胺改性蒙脱土对环氧树脂固化过程的影响   总被引:1,自引:0,他引:1  
段轶锋  王小群  刘羽中  杜善义 《化学学报》2012,70(10):1179-1186
首先制备了五种聚醚胺改性蒙脱土(MMT), 并将这五种聚醚胺改性蒙脱土加入到双酚A 型环氧树脂E51 和聚醚胺D400体系中, 采用差示扫描量热法(DSC)考察了五种聚醚胺改性MMT对环氧树脂升温固化进程的影响. 随后, 优选一种EP/MMT 混合体系即EP/D400-T500-MMT 混合体系, 系统地研究了该体系与纯环氧树脂体系在130, 140, 150 及160 ℃等几个温度下的等温固化过程, 考察了等温固化时间对固化度和固化度变化速率的影响以及固化度与固化度变化速率之间的关系, 并利用Kamal 模型进行拟合计算了固化动力学参数. 研究结果表明, 与纯环氧树脂相比, 几种聚醚胺改性MMT 的固化放热峰均向高温迁移, 同时聚醚胺D400 协同插层MMT 降低了高分子量聚醚胺插层MMT 所导致的环氧树脂DSC 曲线的畸变情况; EP/D400-T500-MMT 混合体系和纯环氧体系的等温固化反应过程符合Kamal 模型;在相同的固化温度下, EP/D400-T5000-MMT 混合体系的反应速率常数k1k2 值以及反应级数m 均比纯EP 体系小, 而反应级数n 以及总反应级数m+n 值比纯EP 体系大, 表明两种聚醚胺协同插层的改性蒙脱土D400-T5000-MMT 的加入降低了环氧体系固化反应速率. 另外, EP/D400-T5000-MMT 混合体系的活化能Ea1Ea2 与纯EP 体系的相比也略有升高.  相似文献   

17.
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak–Berggren autocatalytic model.  相似文献   

18.
双酚-S环氧树脂与琥珀酸酐固化反应动力学   总被引:5,自引:0,他引:5  
用差示扫描量热法(DSC)研究了双酚-S环氧树脂(BPSER)与琥珀酸酐固化反应的历程。实验结果表明,固化反应主要分两个阶段,前期由化学动力学控制,服从自催化机理。实验数据利用Kamal方程处理得到两个速率常数k、、k2及两个反应级数m、n、k1、k2的值随反应温度的升高呈增大的趋势,总反应级数m+n在2~2.5之间,当转化率达到40%左右后,由于交联程度增加,分子量迅速增长,分子间扩散较慢,进入  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号