首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrocatalysis of the Oxygen Reaction by Pyropolymers of N4 Complexes   总被引:1,自引:0,他引:1  
Results of research into structural and electrocatalytic properties of metalloporphyrins and metallophthalocyanines pyrolyzed on carbon supports of various dispersion degree in the oxygen electroreduction reaction (OER) are analyzed. The pyrolysis products (pyropolymers) that form at T 800° in inert atmosphere contain centers Co(Fe)–N surrounded by carbon particles. The oxygen electroreduction reaction on pyropolymers in acid and alkali solutions is studied on a model gas-diffusion electrode and a rotating ring–disk electrode. The slopes of Tafel plots in an acid solution are 60 and 120 mV. On a disk electrode covered with a pyropolymer, the intermediate product of OER, hydrogen peroxide, is fixed on the ring electrode throughout the entire range of OER potentials. The activity of pyropolymers in the hydrogen peroxide electroreduction reaction in an acid solution is insignificant. In an acid environment, OER occurs via a parallel–successive mechanism with a slow stage of the attachment of the first electron. In alkali media, slopes of Tafel plots equal 40 and 120 mV at low and high polarizations, respectively. The amount of hydrogen peroxide fixed on the ring electrode corresponds to 2–5% of the disk electrode current. A pyropolymer is active in the hydrogen peroxide reduction. The slow stage in OER in an alkali environment is the attachment of the second electron at a low polarization and the attachment of the first electron, at a high polarization. In acid and alkali solutions a pyropolymer is methanol-tolerant.  相似文献   

2.
Mixed-metal oxyhydroxides—especially those of Ni and Fe—are one of the most active classes of materials known for catalyzing the oxygen evolution reaction (OER). Here, nanoparticulate mixed metal oxyhydroxides (of Ni, Fe, and Co) were prepared on an electrode surface by electrochemical reaction of a precursor solution encapsulated in aqueous nanodroplets (AnDs), with each of the droplets containing 10 s of attoliters of fluid. Electrode reactions and synthesis can be monitored in situ by electrochemistry as single AnD stochastically lands and interacts with the working electrode. Resultant metal oxyhydroxide nanoparticles can be size and composition controlled precisely by modulating the precursor solution stored in the AnD. Nanoparticulate metal oxyhydroxides were implemented as catalysts for the OER and exhibited superior catalysis compared to their thin-film counterparts, demonstrating a hundred-thousand-fold enhancement in atom efficiency at comparable turnover rates.  相似文献   

3.
电催化析氧反应(OER)是电解水制氢的重要半电池反应。然而,OER的缓慢动力学仍需研究高效的电催化剂。在非贵金属催化剂中,NiFe基材料是OER催化剂研究热点。本文通过食人鱼溶液简单一步浸渍刻蚀法将不同Fe含量的泡沫NiFe合金进行氧化,制备了表面具有纳米片形貌的NiFeOOH自支撑电催化剂,并深入研究其电催化析氧性能。通过SEM、XRD、XPS等对电催化剂的形貌结构及成分进行表征,证实了三维多孔基底上NiFeOOH纳米片结构的形成。由于高价镍、铁物种的存在以及二维纳米片结构的生成,NiFeOOH/NF的析氧性能大幅度提高,在10 mA?cm-2的电流密度下过电位仅155.68 mV,Tafel斜率为 88.2 mV?dec-1。这为研制高效、耐用的自支撑非贵金属电极提供了新思路。  相似文献   

4.
High-performance and low-cost bifunctional catalysts are crucial to energy conversion and storage devices. Herein, a novel oxygen electrode catalyst with high oxygen evolution reaction and oxygen reduction reaction (OER/ORR) performance is reported based on bimetal FeNi nanoparticles anchored on N-doped graphene-like carbon (FeNi/N−C). The complete 2D ultrathin carbon nanosheet is induced by etching and stripping of molten sodium chloride and its ions in the carbonization process at suitable temperature. The obtained FeNi/N−C catalyst exhibits rapid reaction kinetics for OER, efficient four electron transfer for ORR, and outstanding bifunctional performance with reversible oxygen electrode index of 0.87 V for OER/ORR. Zn-air batteries with a high open-circuit voltage of 1.46 V and a stable discharge voltage of 1.23 V are assembled using liquid electrolytes, zinc sheet as Zn-electrode and FeNi/N−C coating on carbon cloth as air-electrode. The specific capacity is as high as 816 mAh g−1 and there is extremely little decay after charge-discharge cycle time of 275 h for the FeNi/N−C as oxygen electrode catalyst in Zn-air battery, which are much better than that assembled with Pt/C−RuO2 catalyst.  相似文献   

5.
Multi-metal electrocatalysts provide nearly unlimited catalytic possibilities arising from synergistic element interactions. We propose a polymer/metal precursor spraying technique that can easily be adapted to produce a large variety of compositional different multi-metal catalyst materials. To demonstrate this, 11 catalysts were synthesized, characterized, and investigated for the oxygen evolution reaction (OER). Further investigation of the most active OER catalyst, namely CoNiFeMoCr, revealed a polycrystalline structure, and operando Raman measurements indicate that multiple active sites are participating in the reaction. Moreover, Ni foam-supported CoNiFeMoCr electrodes were developed and applied for water splitting in flow-through electrolysis cells with electrolyte gaps and in zero-gap membrane electrode assembly (MEA) configurations. The proposed alkaline MEA-type electrolyzers reached up to 3 A cm−2, and 24 h measurements demonstrated no loss of current density of 1 A cm−2.  相似文献   

6.
A composite comprised of oxygen reduction reaction (ORR) catalyst and oxygen evolution reaction (OER) catalyst was designed and applied as a bifunctional electrocatalyst for the air electrode of the lithium-air battery. The ordered mesoporous carbon nitride (MCN) prepared by a nano hard-templating approach displayed a surface area as high as 648 m2 g?1 and a large pore volume of 0.7 cm3 g?1 and acted as both the ORR catalyst and the support for the in situ-formed OER catalyst of Pt particles with a diameter of 3–4 nm. The electrochemical performances of the electrode were examined in a solid-state lithium-air cell structured as Li/LATP-based electrolyte/cathode, which demonstrated a higher round-trip efficiency and lower overpotential compared with the Pt@AB and MCN electrodes. The combination of the OER and ORR catalysts is proved as an effective way to improve the performance of lithium-air batteries.  相似文献   

7.
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.  相似文献   

8.
化石燃料的使用排放了大量CO2,对气候和环境造成了日益严重的危害.固体氧化物电解池(SOEC)能够利用可再生能源产生的电能将CO2高效转化成CO,降低CO2排放的同时,又能减少化石燃料的使用,近年来受到研究者的广泛关注.相比于低温液相CO2电还原,SOEC高的运行温度保证了其较高的反应速率,即较高的电流密度.典型的SOEC单电池由多孔阴极、致密电解质和多孔阳极以三明治的方式组装而成.CO2分子在阴极得到两个电子解离成CO和一个O2–;生成的O2–通过致密电解质传导至阳极,在阳极失去四个电子发生析氧反应(OER)生成一个O2.相比于两电子的阴极反应,阳极四电子的析氧反应更难进行,可能是整个电极过程的速控步,因此开发高性能的阳极材料有望显著提高SOEC的CO2电还原性能.La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)因具有较高的混合离子-电子导电性而被用作SOEC阳极材料,但受LSCF-气体两相界面的限制,其OER性能较低.研究表明,LSCF-掺杂的CeO2-气体所构成的三相界面相比于LSCF-气体两相界面具有更高的电化学反应活性,即OER反应更易在三相界面进行.因此,本文将Gd0.2Ce0.8O1.9(GDC)纳米颗粒浸渍到SOEC LSCF阳极来提高其OER活性,考察了纳米颗粒浸渍量(3,5,10和20 wt%)对SOEC电化学性能的影响.结果表明,SOEC的电化学性能随浸渍量的增加而逐渐升高,当GDC纳米颗粒浸渍量为10 wt%时(10GDC/LSCF),SOEC的电化学性能达到最高,在800 oC和1.6 V的电流密度为0.555 A cm–2,是LSCF阳极SOEC性能的1.32倍.继续增加浸渍量到20 wt%,电化学性能反而开始下降.电化学阻抗谱测试结果表明,GDC纳米颗粒的加入减小了SOEC的极化电阻.对应的弛豫时间分布函数解析结果表明10GDC/LSCF阳极上的OER由四个基元反应构成.电镜和O2-程序升温脱附结果表明,GDC纳米颗粒的加入显著增加了10GDC/LSCF阳极三相界面和表面氧空位的数量以及体相氧的流动性,从而促进了OER四个基元反应的反应速率,降低了这几个过程的极化电阻,因而降低了OER反应的极化电阻,提高了SOEC电还原CO2的电化学性能.  相似文献   

9.
Developing oxygen evolution reaction (OER) catalysts with high activity, long-term durability, and at low cost remains a great challenge. Herein, we report the high activity of fibrous Cu-based catalysts. The synthesis process is simple and scalable. Electrospinning method was selected to synthesize fibrous polymer substrates (Poly(vinylidene fluoride-co-hexafluoropropylene, PVdF-HFP), which are then covered by Cu via electroless deposition. Cu-deposited PVdF-HFP with different microstructures having smooth and roughened surfaces were also synthesized by drop-casting and impregnation method, respectively, to emphasize the importance of the microstructures on OER activity. The OER activity and durability were studied by linear sweep voltammetry, chronoamperometry, and Tafel slope analysis. The Cu/PVdF-HFP fibrous catalysts exhibit significantly improved OER activity and durability compared with Cu plate as well as Cu-deposited PVdF-HFP with different microstructures. The unique fibrous structure provides better mass transport, diffusion, and large active surface area. In addition to the advantages of the fibrous structure, attenuated total reflection infrared (ATR-IR) and ex situ X-ray photoelectron spectroscopy revealed that the improved specific activity for Cu/PVdF-HFP fiber can be attributed to the synergistic effect between Cu and Cu/PVdF-HFP (electron transfer from Cu to PVdF-HFP) at the Cu|PVdF-HFP interface, which results in optimized reaction energetics for the OER.  相似文献   

10.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have attracted increasing attention for the sake of clean, renewable, and efficient energy technologies in recent years. The design of ORR/OER bifunctional electrocatalysts is a challenging task in the promotion of highly efficient rechargeable metal-air batteries as well as regenerative fuel cells. Owing to the wide adaptability of different types and ratios of metals in the interlayer space as well as the adjustable interlayer distance, composite materials with layered double hydroxides (LDHs) and their derivatives have recently been registered as electrode materials and catalysts supports for various electrochemical reactions. This study examines the recent development of bifunctional electrocatalysts based on LDHs for ORR/OER to expand the application of LDHs in the field of energy storage and conversion. Various bifunctional electrocatalysts associated with LDHs are discussed in detail to improve their performance. Finally, existing problems and future prospects for improving the performance of LDHs bifunctional electrocatalysts are proposed.  相似文献   

11.
Micro- and mesoporous carbide-derived carbons synthesized from molybdenum and tungsten carbides were used as porous supports for a platinum catalyst. Synthesized materials were compared with commercial Vulcan XC72R conducting furnace black. The scanning electron microscopy, X-ray diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and low-temperature N2 adsorption methods were applied to characterize the structure of catalysts prepared. The kinetics of oxygen electroreduction in 0.5 M H2SO4 solution was studied using cyclic voltammetry and rotating disk electrode methods. The synthesized carbide-derived carbons exhibited high specific surface area and narrow pore size distribution. The platinum catalyst was deposited onto the surface of a carbon support in the form of nanoparticles or agglomerates of nanoparticles. Comparison of carbide-derived carbons and Vulcan XC72R as a support showed that the catalysts prepared using carbide-derived carbons are more active towards oxygen electroreduction. It was shown that the structure of the carbon support has a great influence on the activity of the catalyst towards oxygen electroreduction.  相似文献   

12.
Developing efficient catalysts toward the oxygen evolution reaction(OER)is important for water splitting and rechargeable metal-air batteries.Although NiFe oxides are considered as potentially applicable catalysts in the alkaline media,there are still a limited numbers of researches working on membrane electrode assembly(MEA)fed with pure water due to their poor electrical conductivity.In this work,antimony doped tin oxide(ATO)has been employed as conductive supports where NiFe layered double hydroxide uniformly dispersed[named NiFe-LDH(layered double hydroxide)/ATO].The catalysts have been synthesized by a one-step co-precipitation method,and then NiFe-LDH/ATO-air plasma was obtained through mild air plasma treatment.According to XPS analysis,binding energies of Ni2p and Fe2p were shifted negatively.Moreover,a new signal of low oxygen coordination appeared on O1s spectrum after air plasma treatment.These XPS results indicated that oxygen vacancies(Ov)were generated after air plasma treatment.Electrochemical measurement indicated that the vacancy-rich NiFe-LDH/ATO-air plasma exhibited better performance than NiFe-LDH/ATO not only in 1 mol/L KOH solutions but also in an alkaline polymer electrolyte water electrolyzer(APEWE)fed with deionized water.This work provides a feasible way to design practical catalysts used in electrochemical energy conversion systems by choosing corrosion resistance supports and defect engineering.  相似文献   

13.
The activity of composite catalysts, Pt and Co-porphyrin- or Fe-phthalocyanine-based pyropolymers on low-disperse carbonaceous carriers (graphite, carbon black), in the oxygen and H2O2electroreduction in 1 M KOH is studied. Kinetic parameters of oxygen electroreduction are determined from experiments with rotating disk and model floating electrodes. Possible mechanism of the oxygen electroreduction reaction is discussed; it includes a slow stage of attachment of the second electron on the pyropolymer/carbonaceous carrier or joining the first electron (under the conditions of Temkin adsorption) on the platinum/graphite catalysts.  相似文献   

14.
阳极共沉积法制备Fe和Co掺杂PbO2电极及其性能表征   总被引:1,自引:0,他引:1  
采用阳极共沉积的方法制备了Fe和Co掺杂Ti/PbO2电极。 用XRD、SEM及循环伏安法研究了Fe和Co掺杂对Ti/PbO2电极的影响。 结果表明,掺杂Fe和Co的Ti/PbO2电极与纯Ti/PbO2电极相比,虽然形貌变化很小,但在结构和性质上发生了改变。 Co掺杂可提高电极的析氧活性,PbO2 电极涂层在电化学过程中存在溶解和重新沉积或者晶型转化的现象。 这种Pb2+的溶解与再沉积可能会影响电极材料的寿命。  相似文献   

15.
The design of cheap and efficient water splitting systems for sustainable hydrogen production has attracted increasing attention. A flexible electrode, based on carbon cloth substrate and iron phosphide nanotubes coated with an iron oxide/phosphate layer, is shown to catalyze overall water splitting. The as‐prepared flexible electrode demonstrates remarkable electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) at modest overpotentials. The surface iron oxide/phosphate, which is formed in situ, is proposed to improve the HER activity by facilitating the water‐dissociation step and serves directly as the catalytically‐active component for the OER process.  相似文献   

16.
We present the results of electrochemical and structural investigations of several carbon materials: carbon blacks AD 100 and XC 72, ultradisperse diamond (UDD), multiwalled nanotubes (MWNT), various types of filament-like carbon materials (CFC series), and similar carbon materials promoted with cobalt tetra(para-methoxyphenyl) porphyrin (CoTMPhP) pyropolymer (PP). The electrochemical studies were performed at room temperature in 0.5 M H2SO4 by using a rotating disk electrode (RDE), a rotating ring-disk electrode (RRDE) (a thin layer of test material was applied onto the disk electrode), and a floating electrode. Structural characterization of initial and promoted carbon materials involved the determination of specific surface area by the BET method and by the polarization capacitance from cyclic voltammograms, and the particle morphology and dimensions by the transmission electron microscopy (TEM) method. The study of kinetics and mechanism of oxygen electroreduction on carbon materials promoted with CoTMPhP PP showed that the catalysts based on carbon materials of CFC and UDD series possess high specific activity in this reaction and high selectivity with respect to oxygen reduction to water. These catalysts are superior to the catalysts, in which carbon blacks AD 100 and XC 72 are used as the supports, in the specific activity.  相似文献   

17.
Platinum (Pt) and iridium (Ir) catalysts are well known to strongly enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, respectively. Pt–Ir-based bimetallic compounds along with carbon-supported titanium oxides (C–TiO2) have been synthesized for the application as electrocatalysts in lithium oxygen batteries. Transition metal oxide-based bimetallic nanocomposites (Pt–Ir/C–TiO2) were prepared by an incipient wetness impregnation technique. The as-prepared electrocatalysts were composed of a well-dispersed homogenous alloy of nanoparticles as confirmed by X-ray diffraction patterns and Fourier transform scanning electron microscopy analyses. The electrochemical characterizations reveal that the Pt–Ir/C–TiO2 electrocatalysts were bifunctional with high activity for both ORR and OER. When applied as an air cathode catalyst in lithium-air batteries, the electrocatalyst improved the battery performance in terms of capacity, reversibility, and cycle life compared to that of cathodes without any catalysts.  相似文献   

18.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

19.
可持续能源的迅速发展,使绿色清洁的氢能源成为热点。质子交换膜(PEM)水电解是一项很有前途的技术,可高效生产高纯度氢气。IrO_(2)作为质子交换膜(PEM)水电解槽阳极氧析出反应(OER)的商用电催化剂,既能在强酸性、高强度腐蚀条件下保持稳定,又表现出优异的催化性能。然而,由于Ir的稀缺性和昂贵的价格,提高Ir基催化剂的OER活性,开发低Ir催化剂就显得至关重要。对其反应机理的认知是当前的研究热点之一,也是设计优异的OER催化剂的关键所在。因此,首先从OER机理出发,对目前被广泛认可的吸附物逸出机理(AEM)和晶格氧逸出机理(LOER)两种反应机理进行了研究。随后,根据所提出的这两种机理,介绍了OER催化剂设计的基本准则,即调控Ir基催化剂的电子结构,改善反应中间物种在催化活性位点上的吸附能,从而提高OER催化活性。并从催化剂的结构设计、形貌控制、载体材料3个方面简单概述了最近OER催化剂的研究进展。最后,在已有研究的基础上,提出了目前OER催化剂面临的困难与挑战,这为以后相关的研究指明了方向。  相似文献   

20.
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords “silica”, “electrocatalysts”, “ORR”, “OER”, “HER”, “HOR”, “CO2RR”, “batteries”, and “supercapacitors”. The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号