首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5?mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g?1 at 0.5 A g?1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices.  相似文献   

2.
The effect of chemical composition to ionic conductivity and activation energy of vitreous solid electrolytes (SE) based on Li2O-P2O5-LiF system (Li2O ≥ 45.4 mol %) was detected. The temperature effect to conductivity and activation energy was studied. An original technology was designed to prepare vitreous SEs in Li2O-P2O5-LiF system containing up to 20 mol % LiF and characterized with ionic conductivity up to 4.4 × 10?7 S cm?1 (24°C) and activation energy about 0.567 eV. The synthesized materials are characterized with high X-ray amorphism and technological performance.  相似文献   

3.
The subsolidus region of the Li2O-MgO-B2O3 system has been studied by X-ray powder diffraction and differential thermal analysis. Isothermal sections at 500–550 and 650–700°C have been designed. The following complex borates have been found to form: at 500–550°C, Li2MgB2O5 and LiMgBO3 are formed; at 650–700°C, a new phase Li4MgB2O5 is formed along with LiMgBO3; and at 5500–600°, Li2MgB2O5 is formed.  相似文献   

4.
The phase and chemical compositions of the precipitates formed in the LiVO3-VOSO4-H2O system at initial pH within 1 ≤ pH ≤ 4 and 90°C were studied. The following phases were prepared: an α phase Li1.4(VO)1.3[H2V10O28] · nH2O and a β phase Li0.6 ? x H1.4 + x [V12O31 ? y/2] · nH2O (0 ≤ x ≤ 0.5, 1.3 ≤ y ≤ 2.0) with a layered structure. Li0.4V2O5 · H2O nanorods with the interlayer distance 10.30 ± 0.08 Å were synthesized at 180°C in an autoclave. The morphology, IR spectra, and main formation processes for these polyvanadates were studied.  相似文献   

5.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

6.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

7.
A new Mo2O3(dpm)4 compound (I) is synthesized by the interaction of Mo(CO)6 with 2,2,6,6-tetramethylheptanedione-3,5 (dpm). The structure of complex I determined by the XRD method is as follows: triclinic crystal system, space group P–1, a = 10.1780(7) Å, b = 10.1817(6) Å, c = 13.3255(9) Å, α = 110.562(2)°, β = 102.233(2)°, γ = 93.9041(19)°, V = 1248.17(14) Å3. The compound is characterized by IR spectroscopy, mass-spectrometry and thermogravimetric analysis (TGA).  相似文献   

8.
The limited electrochemical stability and the flammability of the liquid electrolytes presently used in Li-ion batteries stimulates the search for alternatives including ceramic solid electrolytes. Moreover, solid electrolytes also fulfil crucial functions in various large-scale energy storage systems, e.g. as anode-protecting membranes in aqueous Li-air batteries. Here, the processing of the solid electrolytes Li7La3Zr2O12 is studied for applications in Li-air batteries. Molten salt method (MSM) was adopted previously on synthesis of simple oxides; to the best of our knowledge, we report for the first time the adaptation of the MSM to prepare this class of solid electrolytes. As a model compound, we prepared the garnet-related Li6.75La3Zr1.75Ta0.25O12. It has been prepared by using stoichiometric amounts of La2O3, ZrCl4, and Ta2O5 in excess 0.88 M LiNO3:0.12 M LiCl molten salt. Subsequently, samples were heated to various temperatures in the range 600–900 °C for 6 h in air in a recrystallized alumina crucible and finally washed with distilled water to remove excess salts. The obtained Li6.75La3Zr1.75Ta0.25O12 electrolyte powder was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and impedance spectroscopy as well as surface area measurements. The cubic single phase was obtained for samples prepared at temperatures ≥700 °C. The effects of washing with water or aqueous LiOH solution on the structure and conductivity of the phases will be discussed.  相似文献   

9.
In this study, an ionic complex of V(V) was synthesized by using ultrasonic method, and it was used as a precursor for production of a new catalyst for selective preparation of methylal or dimethoxymethane (DMM). By reaction between an ionic ligand [pyda.H2]2+[pydc]2? (LH2), (pyda.H2 = 2,6-pyridine diammonium and pydc = 2,6-pyridinedicarboxylate) and ammonium vanadate, the five coordinated V(V) complex, [pyda.H][V(pydc)O2], {2,6- diaminopyridinum 2,6-pyridinedicarboxylatodioxovanadate(V)}, VLH2 was synthesized. The prepared complex VLH2 was characterized by SEM, thermal analysis TGA/DTA, FT-IR spectroscopy and X-ray diffraction studies. The results showed that the yield of the reaction was increased up to 64%. The average particle sizes of the obtained complex VLH2 were about 50–60 nm. Also, the nano-catalyst of V2O5/Al2O3 was synthesized by impregnation method and was prepared as a nano-catalyst with average particles sizes of 50–60 nm, and its characterization was performed by XRD, EDX and SEM methods. Finally, the prepared catalyst was used to converting of methanol to methylal at different process conditions.  相似文献   

10.
Here, we demonstrate a new, rapid, and flexible hydrothermal method using the V2O5 and LiOH as the precursors to synthesize Li3VO4. The ratios of precursor of V2O5 and LiOH can be changed in a wide range to control different preferred facets and morphologies, and the reason has been discussed from the structure of Li3VO4. The electrical performance of the Li3VO4 has also been systematically investigated. The thus-synthesized Li3VO4 exhibits significantly improved rate capability and cycling life compared with commercial graphite, synthesized Li4Ti5O12, and previously reported results on Li3VO4.  相似文献   

11.
A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials.  相似文献   

12.
Li2ZnTi3O8/C nanocomposite has been synthesized using phenolic resin as carbon source in this work. The structure, morphology, and electrochemical properties of the as-prepared Li2ZnTi3O8 samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy (RS), galvanostatic charge–discharge, and AC impedance spectroscopy. SEM images show that Li2ZnTi3O8/C was agglomerated with a primary particle size of ca. 40 nm. TEM images reveal that a homogeneous carbon layer (ca. 5 nm) formed on the surface of Li2ZnTi3O8 particles which is favorable to improve the electronic conductivity and inhibit the growth of Li2ZnTi3O8 during annealing process. The as-prepared Li2ZnTi3O8/C composite with 6.0 wt.% carbon exhibited a high initial discharge capacity of 425 and 159 mAh g?1 at 0.05 and 5 A g?1, respectively. At a high current density of 1 A g?1, 95.5 % of its initial value is obtained after 100 cycles.  相似文献   

13.
The conductivity and transport number of oxygen ions of BiVO4-(5, 7, 10, 12) wt % V2O5 ceramic composites are measured using the four-probe and coulomb-volumetric methods, respectively, in the temperature range from 500 to 660°C. The phase transition of wetting of grain boundaries with eutectic melt at 640°C is discovered. It is shown that the grain boundary wetting significantly raises the ionic conductivity of composites.  相似文献   

14.
The effect of the method used for the synthesis of NH4V3O7 on its morphology, textural parameters, and optical properties was studied. Ammonium vanadate NH4V3O7 was prepared by treating NH4VO3 in the presence of citric acid under hydrothermal (4.0 ≤ pH ≤ 5.5, T = 180–200°C, 48 h) and microwave–hydrothermal (3.5 ≤ pH ≤ 5.0, T = 180–220°C, 20 min) conditions. Self-assembled NH4V3O7 microcrystals crystallizing in monoclinic system with unit cell parameters a = 12.247(5) Å, b = 3.4233(1) Å, c = 13.899(4) Å, β = 89.72(3)°, and V = 582.3(4) Å3 (space group P21) were shown to be formed independently of the method used to treat the reaction mixture. The morphology of NH4V3O7 particles was shown to depend on рН of the reaction mass and the method of synthesis. The structural features of NH4V3O7 were studied by IR, UV, and Vis spectroscopy, and the optical bandgap was determined.  相似文献   

15.
The xerogel V2O5/C composite was synthesized by a sol-gel method, using the suspension of carbon black in the solution of crystalline V2O5 in hydrogen peroxide as the precursor solution. The Li+ intercalation/deintercalation reactions of the xerogel V2O5/C composite, used as an anode material of a two-electrode cell with an aqueous LiNO3 solution as the electrolyte, was studied before and after the addition of vinylene carbonate (VC). Upon addition of vinylene carbonate in an amount of only l wt %, the coulombic capacity during galvanostatic cycling, instead of commonly observed permanent fade, displayed an initial increase and then a stable plateau.  相似文献   

16.
Natural graphite treated by mechanical activation can be directly applied to the preparation of Li3V2(PO4)3. The carbon-coated Li3V2(PO4)3 with monoclinic structure was successfully synthesized by using natural graphite as carbon source and reducing agent. The amount of activated graphite is optimized by X-ray diffraction, scanning electron microscope, transmission electron microscope, Raman spectrum, galvanostatic charge/discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy tests. Our results show that Li3V2(PO4)3 (LVP)-10G exhibits the highest initial discharge capacity of 189 mAh g?1 at 0.1 C and 162.9 mAh g?1 at 1 C in the voltage range of 3.0–4.8 V. Therefore, natural graphite is a promising carbon source for LVP cathode material in lithium ion batteries.  相似文献   

17.
Thermal properties of Co2FeV3O11 have been reinvestigated. It has been proved that this compound does not exhibit polymorphism. It melts incongruently at the temperature of 770±5°C and the phase with lyonsite type structure is the solid product of this melting. Phase relations in the whole subsolidus area of the CoO–V2O5–Fe2O3 system have been determined. The solidus area projection onto the component concentration triangle plane of this system has been constructed using the DTA and XRD methods. 15 subsidiary subsystems can be distinguished in this system.  相似文献   

18.
It has been demonstrated that Co2V2O7 and InVO4 react with each other forming a new compound of the Co2InV3O11 formula, when their molar ratio is equal to 1:1, or among CoCO3, In2O3 and V2O5, mixed at a molar ratio of 4:1:3. This compound melts incongruently at the temperature of 960±5°C, depositing crystals of InVO4. It crystallizes in the triclinic system and the unit cell parameters amount to: a=0.6524(6) nm, b=0.6885(5) nm, c=1.0290(4) nm, α=96.5°, β=104.1°, γ=100.9°, Z=2. The phase equilibria being established in the Co2V2O7–InVO4 system over the whole components concentration range up to the solidus line were described.  相似文献   

19.
Electrochemical Methods were used to study the Pt|Li0.9CoO2|(Li7La3Zr2O12 + LiPO3 glass)|Li0.9CoO2|Pt symmetric cell simulating the operation of the cathode of a solid-state power cell. It was shown that the glassy electrolyte serves in the system for organizing an ionic contact between the solid electrolyte and the cathode material. The current-breaking method and impedance spectroscopy demonstrated that the resistance of the cell is about 600 Ω at a temperature of 325°C. The overvoltage is 88 mV at a current density of 13 µA cm–2. The plot describing the dependence of the current density on voltage is of the activation type, i.e., the main contribution to the polarization comes from the activation component.  相似文献   

20.
Sodium triuranate Na2(UO2)3O3(OH)2 was synthesized by the reaction between aqueous uranyl acetate solution and aqueous sodium nitrate solution under hydrothermal conditions at 200°C. The composition and structure of the synthesized compound were determined, and its dehydration and thermal decomposition were studied, by chemical analysis, X-ray diffraction, IR spectroscopy, and thermal analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号