首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(o‐aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Electrochemical study of this modified electrode shows a good redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic oxidations of glucose and other carbohydrates at the surface of the Ni/SDS‐POAP/CPE were studied in a 0.1 M NaOH solution. Compared to POAP/CPE, the SDS‐POAP/CPE significantly enhanced the catalytic efficiency of Ni ions for carbohydrates oxidation. Finally, using chronoamperometric method, the catalytic rate constants (k) for carbohydrates were calculated.  相似文献   

2.
Poly(o-aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Electrochemical study of this modified electrode shows a good redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic oxidations of ceftazidim and cefazolin at the surface of the Ni/SDS-POAP/CPE were studied in a 0.1 M NaOH solution. Finally, using chronoamperometric method, the catalytic rate constants (k) for ceftazidim and cefazolin were calculated. Electrode was successfully applied for determination of ceftazidim and cefazolin in pharmaceutical preparations.  相似文献   

3.
Poly(isonicotinic acid) (PINA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) and Co(II) ions were incorporated into the electrode by immersion of the polymer-modified electrodes in Ni(II) and Co(II) ion solutions in different proportions. After the preparation of modified electrodes, their electrochemical behavior was studied by cyclic voltammetric experiments. Electrocatalytic oxidation of methanol at the surface of the modified electrodes was studied in 1?M NaOH solution. These modified electrodes exhibit high electrocatalytic activity and stability in alkaline solution, showing oxidation peaks at low potentials with high current densities. The electrooxidation of methanol was found to be more efficient on CPE/PINA(SDS)/Ni80Co20 than on CPE/PINA(SDS)/Ni and CPE/PINA(SDS)/Ni50Co50. The effects of various parameters such as scan rates and methanol concentration on the electrooxidation of methanol are also investigated.  相似文献   

4.
The poly(4-aminobenzoic acid/o-toluidine) (4-AB/OT) modified carbon paste electrode (CPE) was fabricated by consecutive cyclic voltammetry. The poly(4-AB/OT) CPE shows catalytic activity for the oxidation of nitrite in 0.1 M phosphate buffer solution (pH 7). Due to the electrostatic interaction between the negatively-charged nitrite ions and the positively-charged poly(4-AB/OT) film, the operating potential for nitrite oxidation was shifted about 240 mV to negative side, compared to bare CPE. The catalytic peak current was found to be linear with the nitrite concentration in the range of 6–600 μM, with a correlation coefficient of 0.981, using amperometry. The sensitivity and limit of detection for the poly(4-AB/OT) CPE are about 187.4 μA/mM and 3.5 μM, respectively. The possible interferences from several common ions were tested. The developed sensor was also successfully applied to the determination of nitrite concentration in a mineral water sample.  相似文献   

5.
In this work, an aqueous solution of sodium dodecylsulfate (SDS) surfactant is used as an additive for electropolymerization of N,N-dimethylaniline (DMA) onto carbon paste electrode (CPE), which is investigated as a novel matrix for deposition of nickel. The electrochemical oxidation of formaldehyde is studied at the surface of this modified electrode. The electrooxidation of formaldehyde was found to be more efficient on CPE modified with Ni/Poly(N,N-Dimethylaniline) (SDS), Ni/PDMA (SDS), than deposition Ni on CPE in alkaline solution. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry and chronomethods studies. Also, the transfer second-order rate constant (k = 5.5 × 103 cm3 mol?1 s?1) between formaldehyde and nickel hydroxide was calculated. Moreover, in order to optimize of electrode and variables for efficient performance of Ni/PDMA (SDS)/CPE towards formaldehyde oxidations, the effect of various parameters such as number of potential cycles for preparation of polymer, nickel and formaldehyde concentration and accumulation time have been investigated.  相似文献   

6.
Poly(N,N-dimethylaniline) (PDMA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode. The polymerization behavior of N,N-dimethylaniline in the presence of SDS is quite different from that of N,N-dimethylaniline in the absence of SDS. The effect of varying amount of SDS on the rate of polymerization of N,N-dimethylaniline was investigated. The electrochemical behavior of the SDS-PDMA carbon paste electrode has been investigated by cyclic voltammetry in 0.5 M H2SO4 and 5 mM K4[Fe(CN)6]/0.1 M KCl solutions as the supporting electrolyte and model system, respectively. The synthesized PDMA was characterized by FT-IR and scanning electron microscopy (SEM). Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. The electro catalytic oxidations of methanol at the surface of the Ni/SDS-PDMA electrode were studied in a 0.1 M NaOH solution. Compared to bare carbon paste and PDMA-modified carbon paste electrodes; the SDS-PDMA electrode significantly enhanced the catalytic efficiency of Ni ions for methanol oxidation.  相似文献   

7.
Poly(o‐anisidine) (POA) was formed by successive cyclic voltammetry in monomer solution containing sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed. The capability of this modified electrode for catalytic oxidation of folic acid was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for folic acid oxidation were calculated. The catalytic oxidation peak current of folic acid was linearly dependent on its concentration and a linear calibration curve was obtained in the range of 0.1 to 5 mM with a correlation coefficient of 0.9994. The limit of detection (3σ) was determined as 0.091 mM. This electrocatalytic oxidation was used as simple, selective and precise voltammetric method for determination of folic acid in pharmaceutical preparations.  相似文献   

8.
In the present work, nickel-zeolite modified carbon paste electrode (Ni-ZMCPE) was prepared. The electrochemical behaviour of hydrogen peroxide at the surface of modified electrode was investigated by cyclic voltammetry and chronoamperometry in 0.1 M NaOH supporting electrolyte. The electrochemical characterization of Ni-ZMCPE exhibits redox behavior of Ni(III)/Ni(II) couple in alkaline medium. It has been shown that Ni-ZMCPE improves efficiency of the modified electrode toward hydrogen peroxide electrooxidation (It wasn’t remarkable different on ZMCPE and CPE in the presence and absence of hydrogen peroxide). Moreover, the effects of various parameters such as effect of different percents of Ni-Z to graphite, effect of pH and hydrogen peroxide concentration on the electrooxidation of hydrogen peroxide as well as stability of the Ni-ZMCPE have also been investigated. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of hydrogen peroxide in the range 0.03–0.1 and 0.3–6 mM with amperometric method. The detection limit (S/N = 3) was also estimated to be 1 μM.  相似文献   

9.
A highly sensitive sensor based on Ni nanoparticles/poly (1,2-diaminoanthraquinone) modified electrode was fabricated at glassy carbon (GC) electrode (Ni/PDAAQ@GC ME) using cyclic voltammetry technique. The incorporation of nickel (II) ions nanoparticles (Ni NPs) followed by anodic polarization process was achieved. Surface morphologies of both PDAAQ@GC ME and Ni/PDAAQ@GC MEs were studied by scanning electron microscope. Ni/PDAAQ@GC ME was tested for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) by square wave voltammetry technique. The ME showed excellent electrocatalytic activity toward electrooxidation of these biomolecules in their single, binary and ternary systems in alkaline 0.1 M NaOH solutions. Experiment revealed that the low detection limits (LOD) for AA, DA and UA were 0.11, 0.072 and 1.2 µM in single system, respectively, and 0.069, 0.29 and 0.12 µM in ternary system, respectively.  相似文献   

10.
Electrolytically deposited Ni on polyaniline film covered carbon paste electrode (Ni/PANI/CPE) was used as anode for the electrooxidation of methanol in alkaline medium. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry, impedance spectroscopy, chronomethods, and polarization studies. The morphology and composition of the modified film were obtained using scanning electron microscope and energy dispersive X-ray analysis techniques. The electrooxidation of methanol in NaOH was found to be more efficient on Ni/PANI/CPE than on bare Ni, electrodeposited Ni on Pt, Ni on glassy carbon, and Ni on CPE substrates. Partial chemical displacement of dispersed Ni on PANI with Pt or Pd further improved its performance towards methanol oxidation.  相似文献   

11.
A micellar solution of sodium dodecylsulfate (SDS) exhibits the property of being separated into two phases due to a temperature change or the addition of salts. The ammine-complexes of copper(II), nickel(II) and palladium(II) reacted with the dodecylsulfate anion to form the corresponding ion-pair, and were extracted into the SDS gel phase. The SDS plays the roles of a pairing-ion for the ammine-complexes and of an extraction medium. The ion-pair extraction mechanism was investigated; the extractability of metals was given by the function of the solubility products of the ion-pairs. This method was applied to the mutual separation of Ni(II)/Cu(II) and Pd(II)/Pt(II). The driving force for the extraction was an electrostatic interaction between the cationic complex and the surfactant anion. The use of the SDS gel as ion-exchanger is also expected.  相似文献   

12.
Poly(isonicotinic acid) (PINA) film was electrosynthesized on carbon paste electrode (CPE) by using the repeated potential cycling technique in aqueous solution containing isonicotinic acid (INA), sulfuric acid and sodium dodecyl sulfate (SDS). Then, nickel and cobalt ions were incorporated by immersion of CPE/PINA prepared in the presence of SDS (CPE/PINA(SDS)) in a solution with different proportions of nickel chloride and cobalt chloride. The electrochemical characterization of mixed hydroxides containing cobalt and nickel at the surface of the modified electrode is presented. The modified electrodes were successfully used in the electrocatalytic oxidation of glucose. Finally, the electrocatalytic oxidation peak currents of glucose exhibited a good linear dependence on concentration, and its quantification can be done easily. The good analytical performance, low cost and straightforward preparation method make this novel electrode material promising for the development of an effective glucose sensor.  相似文献   

13.
A further investigation of a chromatographic system allowing determination of hydrogen ions is reported. For this purpose an octadecylsilica column dynamically modified with sodium dodecylsulfate (SDS) or lithium dodecylsulfate (LDS) was used as stationary phase and a slightly acidified electrolyte (usually KCl)-SDS solution was used as the eluent. The concentration of SDS, KCl and the acidity of the eluent affected the structure of aggregates formed by the molecules of dodecylsulfate at the surface of the stationary phase. These aggregates of dodecylsulfate were found to be responsible for the appearance of a chromatographic peak attributed to the presence of H3O+ ions in a sample. Other cations in the sample could be separated in the same manner, permitting the simultaneous separation of monovalent cations from H3O+. The detection limit for H3O+ ions was 2.25 x 10(-6) M using an eluent comprising 0.3 mM LDS, 50.0 mM KCl and 0.10 mM H2SO4. The proposed method is shown to be applicable for the determination of free H3O+ ions in aqueous solutions of strong acids.  相似文献   

14.
This study investigates the electrocatalytic oxidation of glucose and some other carbohydrates on nickel/poly(o‐aminophenol) modified carbon paste electrode as an enzyme free electrode in alkaline solution. Poly(o‐aminophenol) was prepared by electropolymerization using a carbon paste electrode bulk modified with o‐aminophenol and continuous cyclic voltammetry in HClO4 solution. Then Ni(II) ions were incorporated to electrode by immersion of the polymeric modified electrode having amine group in 1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode; a good redox behavior of Ni(OH)2/NiOOH couple at the surface of electrode can be observed, the capability of this modified electrode for catalytic oxidation of glucose and other carbohydrates was demonstrated. The amount of α and surface coverage (Γ*) of the redox species and catalytic chemical reaction rate constant (k) for each carbohydrate were calculated. Also, the electrocatalytic oxidation peak currents of all tested carbohydrates exhibit a good linear dependence on concentration and their quantification can be done easily.  相似文献   

15.
In present work, the ionic liquid, 1‐butyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide was incorporated in the carbon paste electrode as the binder (IL‐CPE). O‐anisidine (OA) monomer is electropolymerized in the presence of an aqueous acidic solution onto IL‐CPE (POA/IL‐CPE). The as‐prepared substrate is used as a porous matrix for dispersion of Ni(II) ions by immersing the modified electrode in a nickel(II) nitrite solution. The modified electrodes are characterized by scanning electron microscopy (SEM) and electrochemical methods. The POA/IL‐CPE was applied successfully to highly efficient (current density of 18.2 mA cm?2) electrocatalytic oxidation of formaldehyde in alkaline medium. Finally, the rate constant for chemical reaction between formaldehyde and redox sites of the electrode was calculated.  相似文献   

16.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

17.
Poly(o-toluidine) (sodium dodecyl sulfate) (POT(SDS)) film was electrosynthesized on carbon paste electrode (CPE) by using the cyclic voltammetry technique in aqueous solution containing o-toluidine (OT), sulfuric acid and SDS. Then, copper oxide was incorporated by immersion of POT(SDS)/CPE in a solution of copper sulfate and using constant potential method. Then, the electrochemical characterization of the modified electrode is presented in alkaline solution. For the first time, electrochemical behaviour of amoxicillin (AMX) at the Cu/POT(SDS)/CPE has been investigated using cyclic voltammetry (CV) and chronoamperometric method. The experimental results suggest that the modified electrode exhibits electrocatalytic effect on the oxidation of AMX resulting in a marked enhancement of the anodic peak current response. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of AMX in the range 80–200 and 5–150 μM with CV and amperometric method, respectively. The detection limits (2δ) were also estimated to be 60 and 3 μM. Some kinetic parameters such as the transfer second-order rate constant (k = 4.9 × 106 cm3 mol–1 s–1) of AMX was calculated. Therefore, this modified electrode was a simple, rapid and new electrode to determine AMX in pharmaceutical preparations.  相似文献   

18.
Conducting and stable poly (N-methylaniline) film was prepared by using the repeated potential cycling technique in aqueous solution containing N-methylaniline, sulfuric acid, and sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode (CPE). The transition metal ions of Co(ІІ) were incorporated to the polymer by immersion of the modified electrode in 0.1 M cobalt chloride solution for 10 min. The electrochemical characterization of this modified electrode exhibits stable redox behavior of Co(ІІ)Co(ІІІ) and formation of insoluble oxide/hydroxide cobalt species on the CPE surface. The modified electrode showed well-defined and stable redox couples in alkaline aqueous solution. The modified electrode showed excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of modified electrode toward the H2O2 oxidation was examined using cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility, and high catalytic activity toward the hydrogen peroxide oxidation. Such characteristics were explored for the specific determination of hydrogen peroxide in cosmetics product sample, giving results in excellent agreement with those obtained by standard method.  相似文献   

19.
A carbon paste electrode (CPE) modified by a monolayer film of sodium dodecyl sulfate (SDS) was used for detection of dopamine (DA). Cyclic voltammetry demonstrated improved response of the DA sensor. This suggests the effectivity of surface modification of CPE by SDS. Impedance spectroscopy was used for the characterization of CPE surface properties. The effect of SDS concentration on the electrode quality also reveals that SDS formed a monolayer on CPE surface with a high density of negative-charged end directed outside the electrode. As a result, the carbon paste electrode modified with SDS (SDS/CPE) exerted discrimination against ascorbic acid in physiological circumstance. Thus, it can selectively determine dopamine even in the presence of 220-fold AA combined with differential pulse stripping voltammetry. In pH 7.40 phosphate buffer solution, the oxidation peak current on differential pulse voltammograms increases linearly with the concentration of DA in the range of 5.0 x 10(-7) to 8.0 x 10(-4) mol . L(-1) with a detection limit of 5.0 x 10(-8) mol . L(-1). Satisfying results are achieved when detecting the DA in injection and simulated biology sample.  相似文献   

20.
采用柔性配体法将Ni-salen配合物包裹在纳米分子筛LTA的超笼中,用来修饰碳糊电极制得Ni(Ⅱ)-SalenA/CPE,并采用循环伏安法、计时电流法和计时库仑法考察了该电极电催化氧化0.1 mol/L NaOH溶液中肼反应性能.首先采用无有机模板剂法合成纳米分子筛LTA,并用各种技术进行了表征.XRD和粒径分析结果分别显示LTA晶体的平均粒径为56.1和72nm.在Ni(Ⅱ)-SalenA/CPE电极氧化还原位上水合肼催化氧化反应电子转移系数为0.64,速率常数为1.03×105cm3/(mol·s).电催化反应机理研究表明,水合肼氧化反应通过它与Ni3+(Salen)O(OH)反应或直接进行电氧化反应.阳极峰电流与扫描速率的平方根呈线性关系,表明反应受扩散控制,水合肼的扩散系数为1.18×10?7cm2/s.结果表明,Ni(Ⅱ)-SalenA/CPE对水合肼氧化反应表现出高的电催化活性,这是由于纳米分子筛LTA的多孔结构以及Ni(Ⅱ)-Salen的存在.最后研究了水合肼在碱性溶液中Ni(Ⅱ)-SalenA/CPE电极上的氧化反应机理,发现其为四电子过程,第一个电子转移反应为速率控制步骤,然后是一个三电子过程,产生环境友好的最终产物氮气和水.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号