首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
This short review presents the recent developments in the direct synthesis of cyclic carbonates from olefins and CO2. The straightforward synthesis of cyclic carbonates from olefins instead of epoxides, also called one-pot “oxidative carboxylation” of olefins, can be viewed as the coupling of two sequential reactions of epoxidation of olefins and CO2 cycloaddition to epoxides formed. The facile synthetic approach would make carbonate synthesis simpler and even cheaper with industrial potential from environmental and economic points of view. Some progresses have been made on this direct synthetic reaction for cyclic carbonates with homogeneous and heterogeneous catalysts, however, this reaction system is still at a preliminary stage. Among the catalysts reported, only a few can be considered as effective for the direct oxidative carboxylation of olefins to cyclic carbonates. Thus active and selective catalysts should be explored to put the direct synthesis of cyclic carbonates into practical applications.  相似文献   

2.
Aiming highly efficient conversion of greenhouse gas CO2 to cyclic carbonates, a biomass Ru(III) Schiff base complex catalyst ( SalRu ) was constructed by employing a derivative of Lignin degradation (5-aldehyde vanillin). The SalRu catalyst had a remarkable conversion for epoxides into corresponding cyclic carbonates even at atmospheric pressure of CO2 without the presence of co-catalyst. As the condition at 120 °C and 2 MPa CO2 the conversion reached to 94 % with selectivity at 99 % after 8 h. 32 % cyclic carbonate production was obtained even under 0.2 MPa CO2 pressure. The epoxide activation and ring opening, CO2 insertion and cyclic carbonate formation were illuminated explicitly through the of characteristic absorption peaks changing, which further providing direct and visual evidence for the mechanism proposing. This study has important theoretical significance for the comprehensive utilization of environmental pollutants and energy.  相似文献   

3.
Described is a robust platform for the synthesis of a large diversity of novel functional CO2‐sourced polymers by exploiting the regiocontrolled ring‐opening of α‐alkylidene carbonates by various nucleophiles. The reactivity of α‐alkylidene carbonates is dictated by the exocyclic olefinic group. The polyaddition of CO2‐sourced bis(α‐alkylidene carbonate)s (bis‐αCCs) with primary and secondary diamines provides novel regioregular functional poly(urethane)s. The reactivity of bis‐αCCs is also exploited for producing new poly(β‐oxo‐carbonate)s by organocatalyzed polyaddition with a diol. This synthesis platform provides new functional variants of world‐class leading polymer families (polyurethanes, polycarbonates) and valorizes CO2 as a chemical feedstock.  相似文献   

4.
The results of systematic XPS measurements of all alkali metal carbonates (Li, Na, K, Rb and Cs) are presented. The first set of experiments was performed with “as received” commercial carbonate powders under liquid nitrogen conditions using a precooling procedure. A second set of experiments was performed under similar experimental conditions after a preliminary grinding (mechanical activation) of the carbonates. In addition, Na2CO3 *1H2O, NaHCO3 and KHCO3 powders were studied. It was found that sample pre-cooling allows distinction between hydrocarbonates and carbonate hydrates. Storage in air leads to formation of hydrocarbonates at the surface of Li2CO3 and Na2CO3. This phenomenon being more pronounced in the former. In contrast, K2CO3 forms a hydrate with one H2O molecule. Rb2CO3 and Cs2CO3 have hydrocarbonates as well as hydrates at the surface and this is more pronounced for Cs2CO3. Grinding of the carbonates results in the formation of hydrocarbonates at the surface, the tendency to do so was found to increase down the group IA, namely, K<Rb≪Cs. For the most part, the hydrocarbonates formed were unstable in vacuum even under liquid nitrogen conditions. Chemical trends in C 1s and O 1s binding energies in carbonates and hydrocarbonates of the Group IA are discussed and related to the nature of the anion and alkali cation.  相似文献   

5.
The synthesis of cyclic carbonates or dimethyl carbonate (DMC) using CO2 as a building block is a very interesting topic. In this work, we found that the metalorganic framework-5 (MOF-5)/KI was an active and a selective catalytic system for the synthesis of cyclic carbonates from CO2 and epoxides, and MOF-5/KI/K2CO3 was efficient for the preparation of DMC from CO2, propylene, and methanol by a sequential route. The impacts of temperature, pressure, and reaction time length on the reactions were investigated, and the mechanism of the reactions is proposed on the basis of the experimental results.  相似文献   

6.
The Raman spectra of selected double carbonates including pirssonite, gaylussite, shortite and quintinite complemented with infrared spectra have been used to characterise the structure of these carbonate minerals. By using a Libowitzky type function hydrogen bond distances for these minerals of 2.669–2.766 Å are estimated. The variation in the hydrogen bond distances contributed to the stability of the mineral. The Raman spectrum of pirssonite shows a single band at 1080 cm−1 attributed to the (CO3)2− symmetric stretching mode, in contrast to shortite and quintinite where two bands are observed. Multiple bands are observed for the antisymmetric stretching and bending region for these minerals proving that the carbonate unit is distorted in the structure of pirssonite and gaylussite.  相似文献   

7.
近年来工作温度在500 ̄700℃的中温固体氧化物燃料电池(IT-SOFC)受到广泛关注。稀土掺杂氧化铈尤其是钐、钆掺杂氧化铈在中温下的离子电导率远高于钇掺杂氧化锆(YSZ),是较为理想的IT-SOFC电解质材料。由于掺杂氧化铈难于烧结,不便于制备致密的电解质膜,通过提高掺杂氧化铈粉体细度来降低其烧结温度,是近年来该材料应用领域的一个研究热点。已有各种合成掺杂氧化铈纳米粉的报道,如采用共沉淀法、固态反应法、水热处理法、燃烧法、溶胶-凝胶法等等。其中碳酸盐共沉淀法由于具有成本低、设备简单以及合成粉体细度高等优点而倍受青睐。通…  相似文献   

8.
Abundant in nature, CO2 poses few health hazards and consequently is a promising alternative to phosgene feedstock according with the principles of Green Chemistry and Engineering. The synthesis organic carbonates from CO2 instead of phosgene is highly challenging as CO2 is much less reactive. As part of our ongoing research on the investigation of catalysts for dimethyl carbonate (DMC) synthesis from methanol and CO2, we herein report results aimed at comparing the catalytic behavior of new SnO2-based catalysts with that of ZrO2. Silica-supported SnO2 and ZrO2 exhibit turnover numbers which are an order of magnitude higher than those of the unsupported oxides. Tin-based catalysts also promote methanol dehydration which makes them less selective than the zirconium analogues. Last but not least, comparison with soluble Bu2Sn(OCH3)2 highlights the superiority of the organometallic precursor for achieving 100% selectivity to DMC but it deactivates by intermolecular rearrangement into polynuclear tin species.  相似文献   

9.
CO2‐based, crosslinked poly(hydroxyl urethane)s (PHUs) are accessed via a set of efficient reactions based on the addition chemistry of thiol‐ene and amines‐cyclic carbonates. This strategy to utilize 5‐membered cyclic carbonates produced from CO2 is robust, facile, modular, and atomically efficient in nature. The thiol‐ene reaction was utilized to access bis(cyclic carbonate), tris(cyclic carbonate), and tetrakis(cyclic carbonate) in quantitative yield from 4‐vinyl‐1,3‐dioxolan‐2‐one and thiols. Multi‐functional cyclic carbonates were simply mixed with diethylenetriamine and/or 1,6‐diaminohexane to generate crosslinked PHUs from 25 to 80 °C. These materials are easy to scale‐up and are potential candidates in many applications such as coatings, binders, and resins. The resulting polymers have glass transition temperatures between ?1 and 16 °C and thermal decomposition temperatures from 190 to 230 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
The mineral and microelement composition of natural manganese minerals from iron-manganese concretions of the Bol’shoe Miassovo lake (South Ural) is investigated. The structural transformations of the samples under the effect of different temperatures are studied. Apart from layered 9.6 Å and 7.2 Å structures of manganese minerals the lake samples often contain various manganese-containing carbonates. For carbonate minerals by IR spectroscopy the dependence of the wavenumbers of ν2 and ν4 vibrations of the CO3 group on the mineral composition is analyzed. The composition of macro- and microelements of iron-manganese concretions of Bol’shoe Miassovo lake varies in wide ranges not only in different samples, but also in different parts of the same sample. An analysis of the microstructure of lake manganese concretions revealed their biomorphic nature that is exhibited in globe-shaped to filament organic bacterial forms.  相似文献   

11.
Kinetic resolution of poly(ethylene glycol)(PEG)-supported carbonates by enzymatic hydrolysis is discussed. Water-soluble carbonates are prepared by immobilization of racemic secondary alcohols onto low-molecular weight monomethoxy PEG (MPEG) through a carbonate linker. Porcine pancreas lipase (PPL) enantioselectively catalyzes the hydrolysis of the substrates to give optically active compounds. In this system, the separation of the resulting alcohols and the remaining substrates is achieved by an extraction process without laborious column chromatography. The carbonates are easily hydrolyzed with K2CO3 to afford the corresponding alcohols.  相似文献   

12.
In contrast to the well-investigated halogen-containing borates and carbonates, very few halogen-containing borate carbonate compounds have been reported. Specifically, no example of borate carbonate fluoride has been synthesized successfully until now. Herein, the planar π-conjugated units [BO3]3− and [CO3]2− and the F ions are introduced simultaneously into one crystal structure resulting in the first borate carbonate fluoride, Ba3(BO3)(CO3)F, by the high-temperature solution method in the atmosphere. Its structure features a hexagonal channel formed by the [BO3]3− and [CO3]2− units with the [F3Ba8]13+ trimers filled in the channel. Various characterizations including single crystal- and powder-XRD, EDX, IR, UV-vis-NIR, and TG-DSC, together with the first principles calculation have been carried out to verify the structure and fully understand the structure–property relationships.  相似文献   

13.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   

14.
Most of the marine precipitation of CaCO3 is due to the biological activities of planktonic and benthic organisms in waters largely oversaturated with respect to calcium carbonates. This saturation state is expected to decrease as CO2 increases in seawater. A conventional view in oceanography suggests that calcium carbonates organisms are preserved in oversaturated waters and dissolve only below the lysocline. However, it has be postulated that a fraction of the CaCO3 precipitated biogenically could dissolve in oversaturated waters due to the formation of microenvironments in which respired CO2 decreases the saturation state of seawater (Ω) in the vicinity of CaCO3 crystals. In the present study, cells of the coccolithophore Emiliania huxleyi obtained from laboratory cultures and field samples collected in the Gulf of Biscay, were examined using “variable-energy” electron-probe microanalysis, to determine the presence and thickness of their organic coating. In addition, a new approach for transferring micrometer-sized particles from a filter onto transmission electron microscope grids using manipulators was used to investigate individual coccolithophores. The dry thickness of an organic coating over the coccolithophore surface was found to range between 280 and 350 nm. The resemblance of this coating to the carbohydrates produced and released by the cell is discussed as well as their potential for constituting a microenvironment that hosts bacteria. The properties of this organic coating and its role in the preservation/dissolution and export of biogenic carbonates in the water column are one of the major issues of carbonate geochemistry.  相似文献   

15.
Thermal decomposition of strontium titanyl oxalate tetrahydrate and calcium titanyl oxalate hexahydrate have been studied employing TG, DTA, gas and chemical analysis. The decompositions proceed through three major steps: dehydration, decomposition of the oxalate to a carbonate and the decomposition of the carbonate to yield the final products, the metatitanates. The intermediates of the oxalate decomposition are found to be Sr2Ti2O4+x(CO3)2-x(CO2)x and Ca2Ti2O4(CO3)2, respectively. The entrapment of carbon dioxide in the former and the presence of non-equivalent carbonate groups in the latter are substantiated by their i.r. spectra. The penultimate solid residues are poorly crystalline Sr2Ti2O5CO3 and amorphous Ca2Ti2O5CO3. Decompositions of these carbonates are accompanied by growth in particle size of the products, SrTiO3 and CaTiO3, respectively.  相似文献   

16.
A series of alkaline uranyl carbonates, M[UO2(CO3)3nH2O (M=Mg2, Ca2, Sr2, Ba2, Na2Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba2[UO2(CO3)3]·6H2O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO2)(CO3)3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90±0.02 Å.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces.  相似文献   

17.
An eco-friendly and efficient binary catalyst system of superbases and amino acids was developed for the synthesis of cyclic carbonates from epoxides and CO2 under metal-free and halide-free conditions. Among the various amino acids and superbases systems tested, the L-histidine/1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU) system achieved the highest conversion of propylene oxide and selectivity of propylene carbonate. The effect of various reaction parameters was evaluated. A possible catalyst mechanism for L-histidine synergized with DBU in the ring opening of epoxide and DBU introduced CO2 activation. The process herein represents a green, simple, and cost-effective route for the chemical fixation of CO2 into cyclic carbonates.  相似文献   

18.
Insertion of CO2 into the polyacrylate backbone, forming poly(carbonate) analogues, provides an environmentally friendly and biocompatible alternative. The synthesis of five poly(carbonate) analogues of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate) is described. The polymers are prepared using the salen cobalt(III) complex catalyzed copolymerization of CO2 and a derivatized oxirane. All the carbonate analogues possess higher glass‐transition temperatures (Tg=32 to ?5 °C) than alkyl acrylates (Tg=10 to ?50 °C), however, the carbonate analogues (Td≈230 °C) undergo thermal decomposition at lower temperatures than their acrylate counterparts (Td≈380 °C). The poly(alkyl carbonates) exhibit compositional‐dependent adhesivity. The poly(carbonate) analogues degrade into glycerol, alcohol, and CO2 in a time‐ and pH‐dependent manner with the rate of degradation accelerated at higher pH conditions, in contrast to poly(acrylate)s.  相似文献   

19.
Utilisation of CO2 as a chemical reagent is challenging, due to the molecule's inherent chemical stability. However, CO2 reacts promptly at high temperature (∼1000 °C) with alkaline-earth oxides to form carbonates and such reactions are used towards capture and re-utilisation. In this work, this concept is extended and CO2 is utilised as a reagent to modify the crystal structure of mixed-metal inorganic solids. Modification of the crystal structure is a “tool” used by materials scientists to tailor the physical property of solids. CO2 gas was reacted with several isostructural mixed-metal oxides Sr2CuO3, Sr1.8Ba0.2CuO3 and Ba2PdO3. These oxides are carefully selected to show anion vacancies in their crystal structure, to act as host sites for CO2 molecules, leading to the formation of carbonate anions, (CO3)2−. The corresponding oxide carbonates were formed successfully and the favourable formation of SrCO3 as secondary phase was minimised via an innovative, yet simple synthetic procedure involving alternating of CO2 and air. We also derived a simple model to predict the kinetics of the reactions for the cuprates, using first-principles density functional theory and assimilating the reaction to a gas-surface process.  相似文献   

20.
The CO adsorption species on Co3O4 and (0.5-15%)CoO/CeO2 catalysts have been investigated by temperature-programmed desorption and IR spectroscopy. At 20°C, the largest amount of CO is adsorbed on the 5%CoO/CeO2 sample to form, on Com2+On2+ clusters, hydrogen-containing, bidentate, and monodentate carbonate complexes, whose decomposition is accompanied by CO2 desorption at 300 and 450°C (1.1 × 1020 g–1). The formation of the carbonates is accompanied by the formation of Co+ cations and Co0, on which carbonyls form. The latter decompose at 20, 90, and 170°C to release CO (2.7 × 1019 g–1). Part of the carbonyls oxidizes to CO2 upon oxygen adsorption, and the CO2 undergoes desorption at 20°C. Adsorbed oxygen decreases the decomposition temperature of the H-containing and bidentate carbonates from 300 to 100-170°C and maintains the sample in the oxidized state, which is active in subsequent CO adsorption and oxidation. CO oxidation by oxygen of the catalyst diminishes the activity of the sample in these processes and increases the decomposition temperature of the carbonate complexes. Taking into account the properties of the adsorption complexes, we concluded that the H-containing and bidentate carbonates are involved in CO oxidation by oxygen of the catalyst at ~170°C under isothermal conditions. The rate limiting step is the decomposition of the carbonates, a process whose activation energy is 65-74 kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号