首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Visualization of an evaporating binary (ethanol-water) droplet reveals presence of oscillatory internal circulation. The visualization is done by using a laser scattering technique. The oscillatory circulation possibly results from the opposing effect of solutal and thermal Marangoni convection as proposed in some earlier theoretical works. The frequency of this oscillation is measured and the variation of this frequency with the initial concentration of the volatile component (ethanol) is reported.  相似文献   

2.
A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.  相似文献   

3.
Wetting on a corrugated surface that is formed via wrinkling of a hard skin layer formed by UV oxidation (UVO) of a poly(dimethylsiloxane) (PDMS) slab is studied using advancing and receding water contact angle measurements. The amplitude of the wrinkled pattern can be tuned through the pre-strain of the PDMS prior to surface oxidation. These valleys and peaks in the surface topography lead to anisotropic wetting by water droplets. As the droplet advances, the fluid is free to move along the direction parallel to the wrinkles, but the droplet moving orthogonal to the wrinkles encounters energy barriers due to the topography and slip-stick behavior is observed. As the wrinkle amplitude increases, anisotropy in the sessile droplet increases between parallel and perpendicular directions. For the drops receding perpendicular to the wrinkles formed at high strains, the contact angle tends to decrease steadily towards zero as the drop volume decreases, which can result in apparent hysteresis in the contact angle of over 100°. The wrinkled surfaces can exhibit high sessile and advancing contact angles (>115°), but the receding angle in these cases is generally vanishing as the drop is removed. This effect results in micrometer sized drops remaining in the grooves for these highly wrinkled surfaces, while the flat analogous UVO-treated PDMS shows complete removal of all macroscopic water drops under similar conditions. These wetting characteristics should be considered if these wrinkled surfaces are to be utilized in or as microfluidic devices.  相似文献   

4.
Colloidal nano altered wetting is an everyday phenomenon with various applications. It occurs when an aqueous colloidal droplet is placed on a wet solid and evaporates with a pinned contact line (to form a shape similar to a coffee ring) and when a ‘superspreader’ is placed on a partially wet solid surface with an unpinned contact line. This article reviews recent advances on the mechanisms behind these two phenomena. For the coffee ring phenomenon, besides the evaporation flow, the thermal and solutal Marangoni flow are critical to the radial flow as they carry solutes from the droplet's interior to the contact line. The particle self-assembly into a layered structure at the droplet edge involves particle structuring under confinement and the stagnation flow. While superspreading is not fully understood, it is proposed that the Marangoni flow plays an essential role in superspreading.  相似文献   

5.
The contact angle (CA) measurements are generally performed on a large planar surface of a specific substrate with the width larger than the droplet size. In this study, the contact angle hysteresis on a narrow rectangular plane with a width smaller than the droplet size is experimentally studied through the inflation–deflation process by the needle–syringe method. The inflation process by stepwise addition of the liquid to the droplet leads to the contact line advancing outwardly along the major axis with advancing angle (θa). Although the droplet width is constrained by the edge of the plane, the CA along the minor axis (θw) increases and its value is greater than θaw > θa). Deflation process by stepwise withdrawal of liquid from the droplet results in the contact line retracting inwardly along the major axis as the CA reduces to receding angle (θr). In the meantime, the CA along the minor axis decreases as well. Both advancing and receding angles acquired from the narrow rectangular plane are confirmed with those obtained form the typical large surface of acrylic glass. On the basis of free energy minimization and liquid-induced defects model, Surface Evolver simulations are performed to reproduce the behavior of droplet on the narrow rectangular plane during the inflation–deflation process. The results of experiment and simulation agree with each other very well.  相似文献   

6.
The formation of multiring deposits of poly(2-vinylpyridine) (P2VP) from the evaporation of a P2VP-(2,6-lutidine + water) drop on a glass substrate does not conform to the conventional pinning-depinning mechanism. Instead, ringlike deposits are formed when the droplet undergoes several cycles of spreading and receding where, for each spreading event, a P2VP ridge is formed at the contact line when the polymer flows toward the outward advancing edge. The complex interplay between an outward solutal-Marangoni flow due to a higher concentration of the polymer at the contact line and an inward solvent-Marangoni flow arising from the differences in volatilities and surface tensions of the pure solvent components plays an important role in enhancing the droplet spreading rate. The newly discovered surface patterning mechanism has important implications in the development of novel techniques for inducing self-assembly of functional materials from evaporating drops.  相似文献   

7.
Contact angle hysteresis of a macroscopic droplet on a heterogeneous but flat substrate is studied using the interface displacement model. First, the apparent contact angle of a droplet on a heterogeneous surface under the condition of constant volume is considered. By assuming a cylindrical liquid-vapor surface (meniscus) and minimizing the total free energy, we derive an equation for the apparent contact angle, which is similar but different from the well-known Cassie's law. Next, using this modified Cassie's law as a guide to predict the behavior of a droplet on a heterogeneous striped surface, we examine several scenarios of contact angle hysteresis using a periodically striped surface model. By changing the volume of the droplet, we predict a sudden jump of the droplet edge, and a continuous change of the apparent contact angle at the edge of two stripes. Our results suggest that as drop volume is increased (advancing contact lines), the predominant drop configuration observed is the one whose contact angle is large; whereas, decreasing drop volume from a large value (receding contact lines) yields drop configuration that predominantly exhibit the smaller contact angle.  相似文献   

8.
The evaporation of sessile droplets placed on polymer surfaces was studied by microscopic observation of the changes in shape of aqueous solution droplets in which the alkyl lengths and the initial concentrations of sodium n-alkylates were varied. Although the initial contact angles of the droplets were not significantly different, the evaporation process varied significantly with the alkyl length of the sodium n-alkylate employed. For the sodium dodecanoate (C 12), showing the highest surface activity, the concentration was found to have a significant effect on the evaporation process of the droplets. In the evaporation of water droplets, variations in the three distinct stages were caused by the different concentration of solutes distributed near or at the air/water interface. It is revealed that the concentration of droplet solute near the air/water interface requires not only solvent evaporation but also some affinity of the solute for the interface. The initial C 12 concentration-dependence of the evaporation of C 12 solution droplets is discussed with particular emphasis on the sudden spreading or sudden contraction of the contact area near the end of evaporation. It is suggested that the cluster formation by C 12 molecules at the air/liquid interface during the evaporation causes Marangoni instability in an evaporating droplet, and the clusters are expected to move dynamically, depending on the droplet concentration of C 12, from the droplet center to the contact line and vice versa, showing Marangoni flow along the air/water interface.  相似文献   

9.
The effect that nanoparticles play in the spreading of nanofluids dynamically wetting and dewetting solid substrates is investigated experimentally, using 'drop shape' analysis technique to analyse aluminium-ethanol contact lines advancing and receding over hydrophobic Teflon-AF coated substrates. Results obtained from the advancing/receding contact line analysis show that the nanoparticles in the vicinity of the three-phase contact line enhance the dynamic wetting behaviour of aluminium-ethanol nanofluids for concentrations up to approximately 1% concentration by weight. Two mechanisms were identified as a potential reason for the observed enhancement in spreading of nanofluids: structural disjoining pressure and friction reduction due to nanoparticle adsorption on the solid surface. The observed 'lubricating effect' that the nanoparticles seem to be inducing is similar to the 'superspreading' effect for surfactant solutions spreading on hydrophobic surfaces, up to a concentration (weight) of approximately 1%, could be a result of the predicted enhanced wetting behaviour. Indeed, Trokhymchuk et al. [Langmuir, 2001, 17, 4940] observed a solid-like ordering of nanoparticles in the vicinity of the three-phase contact line, leading to an increased pressure in the fluid 'wedge'. This increased pressure leads to a pressure gradient which causes the nanofluids to exhibit enhanced wetting characteristics. Another possible cause for the observed increase in advancing/receding contact line velocity could be deposition of nanoparticles on the solid surface in the vicinity of the three-phase contact line resulting in the nanofluid effectively advancing over aluminium rather than Teflon-AF, or the contact line 'rolling' over nanoparticles at the three-phase contact line due to sphericity of nanoparticles. For either of these to be the case, the nanoparticle effect at the three-phase contact line would have to be enhanced for the lower concentration in the same way that it would have to be for the increased pressure in the fluid 'wedge'.  相似文献   

10.
Surface patterning of antifreeze glycoprotein fraction 8 (AFGP 8) via a solvent evaporation method is reported here. In this process, lines of AFGP 8 particles and gridlike patterns were formed as as result of the receding of the droplet contact line and the accumulation of the solute during evaporation. The solution concentration strongly affects the protein line spacing. The average height of the protein was measured to be 8.1 +/- 2.5 A, which may be attributed to the height of a single molecule.  相似文献   

11.
Lai YH  Hsu MH  Yang JT 《Lab on a chip》2010,10(22):3149-3156
We investigated the dynamics of head-on collisions between a moving droplet and a stationary droplet on a surface with a wettability gradient. The mixing of fluids is achieved passively through convective mass transfer caused by the release of surface energy during coalescence, and also through diffusive mass transfer. The coalescence dynamics were visualized with a high-speed camera; the internal flow patterns were resolved with measurement of micro-PIV (particle image velocimetry). The results show that the released surface energy creates a pair recirculation flow inside the merged droplet when the stationary droplet is placed near the gradient, whereas most released surface energy is converted into oscillation when the stationary droplet is far from the gradient. This distinction is attributed to the motion of the contact line during coalescence. The mixing of fluorescently labeled oligonucleotides in these two modes is revealed with confocal micro-laser induced fluorescence technique. The results of 3D scans demonstrate that the motion of the contact line during coalescence distributes the fluids in a complicated manner, thus beneficial for mixing. This mechanism of enhanced mixing is applicable also for platforms other than a surface with a wettability gradient; prospective applications include improving the mixing of biochemical fluids.  相似文献   

12.
Micro‐structure patterned substrates attract our attention due to the special and programmable wettabilities. The interaction between the liquid and micro/nano structures gives rise to controllable spreading and thus evaporation. For exploration of the application versatility, the introduction of nanoparticles in liquid droplet results in interaction among particles, liquid and microstructures. In addition, temperature of the substrates strongly affects the spreading of the contact line and the evaporative property. The evaporation of sessile droplets of nanofluids on a micro‐grooved solid surface is investigated in terms of liquid and surface properties. The patterned nickel surface used in the experiments is designed and fabricated with circular and rectangular shaped pillars whose size ratios between interval and pillars is fixed at 5. The behavior is firstly compared between nanofluid and pure liquid on substrates at room temperature. For pure water droplet, the drying time is relatively longer due to the receding of contact line which slows down the liquid evaporation. Higher concentrations of nanoparticles tend to increase the total evaporation time. With varying concentrations of graphite at nano scale from 0.02% to 0.18% with an interval at 0.04% in water droplets and the heating temperature from 22 to 85°C, the wetting and evaporation of the sessile droplets are systematically studied with discussion on the impact parameters and the resulted liquid dynamics as well as the stain. The interaction among the phases together with the heating strongly affects the internal circulation inside the droplet, the evaporative rate and the pattern of particles deposition.  相似文献   

13.
In this article, the contact angle hysteresis (CAH) of acrylic glass is experimentally and theoretically studied through the compression-relaxation process of droplets by using a superhydrophobic surface with negligible CAH effect. In contrast to the existing technique in which the volume of the droplet changes during the measurement of CAH, this procedure is carried out at a constant volume of the droplet. By observing the base diameter (BD) and the contact angle (CA) of the droplet during the compression-relaxation process, the wetting behavior of the droplet can be divided into two regimes, the contact line withdrawal and the contact line pinning regimes, depending on the gap thickness (H) at the end of the compression process. During the compression process, both regimes possess similar droplet behavior; the contact line will move outward and the BD will expand while the CA remains at the advancing angle. During the relaxation process, the two regimes are significantly different. In the contact line withdrawal regime, the contact line will withdraw with the CA remaining at the receding angle. In the contact line pinning regime, however, the contact line will be pinned at the final position and the CA will decline to a certain value higher than the receding angle. Furthermore, the advancing pinning behavior can also be realized through a successive compression-relaxation process. On the basis of the liquid-induced defects model, Surface Evolver simulations are performed to reproduce the behavior of the droplet during the compression-relaxation process; both contact line withdrawal and pinning regimes can also be identified. The results of the experiment and simulation agree with each other very well.  相似文献   

14.
The ability of a liquid droplet to move on an incline has important ramifications in discrete volume fluidic devices. By taking advantage of the spontaneous and copious formation of visible air bubbles within water droplets on a polytetrafluoroethylene (PTFE) surface, we uncovered a direct correlation between their presence and the ability of droplets to slide down an incline. We forward two possible mechanisms to account for this behavior. The first is attributed to the air bubbles creating regions where additional solid-liquid-vapor phase interfaces are present; wherein due to the buoyancy force acting upwards, the orientation of the contact angles of each bubble (which should also be in hysteresis but in the opposite direction of the hysteresis at the droplet rim contact lines) dictate that the net force of the bubbles in the droplet act down an incline. We show here that this mechanism cannot fully account for the bubble enhanced sliding behavior. The second mechanism is based on the occurrence of the droplet front advancing first, causing the droplet to elongate and thus allowing the receding contact line to partially sweep inwards over the bubbles. This causes a series of point-wise disruptions on the contact line that permits the droplet to slide down more readily. The relatively short time of ~180s during which these micron sized bubbles decrease in size indicates a possibility of this mechanism contributing to a transient means to reduce the retention force of droplets that reside on hydrophobic surfaces.  相似文献   

15.
The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1–2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been derived theoretically and confirmed experimentally. The theory developed for pure liquids is applicable also to nanofluids, where a good agreement with the available experimental data has been found. However, in the case of evaporation of surfactant solutions the process deviates from the theoretical predictions for pure liquids at concentration below critical wetting concentration and is in agreement with the theoretical predictions at concentrations above it.  相似文献   

16.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

17.
The present study investigates the variation of static contact angle of a water droplet in equilibrium with a solid surface in the absence of a body force and the dynamic contact angles of water droplet moving on a solid surface for different characteristic energies using the molecular dynamics simulation. With increasing characteristic energy, the static contact angle in equilibrium with a solid surface in the absence of a body force decreases because the hydrophobic surface changes its characteristics to the hydrophilic surface. In order to consider the effect of moving water droplet on the dynamic contact angles, we apply the constant acceleration to an individual oxygen and hydrogen atom. In the presence of a body force, the water droplet changes its shape with larger advancing contact angle than the receding angle. The dynamic contact angles are compared with the static contact angle in order to see the effect of the presence of a body force.  相似文献   

18.
A nanostructured dynamical contact line is generated when the meniscus of a droplet of water solution is moving on the structured surface of a thin film of a block copolymer of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) because of the difference in the water contact angles on PS and PMMA. Such a structured receding contact line extends DNA molecules as in the molecular combing process. More importantly, it aligns DNA molecules following the position and orientation of the PMMA domains on the surface. The driving force of this phenomenon is discussed as the lateral motion of the locally modified contact line.  相似文献   

19.
Microbead suspensions are often used in microfluidic devices for transporting biomolecules. An experimental investigation on the wettability of microbead suspension is presented in this study. The variation in the surface tension and the equilibrium contact angle with the change in the volume fraction of the microbead is presented here. The surface tension of the microbead suspension is measured with the pendant drop technique, whereas the dynamic contact angle measurements, i.e., advancing and receding contact angles, are measured with the sessile drop technique. An equilibrium contact angle of a suspension with particular volume fraction is determined by computing an average over the measured advancing and receding contact angles. It is observed that the surface tension and the equilibrium contact angle determined from advancing and receding contact angles vary with the magnitude of the microbeads volume fraction in the suspension. A decrease in the surface tension with an increase in the volume fraction of the microbead suspension is observed. The advancement and the recession in contact line for dynamic contact angle measurements are achieved with the motorized dosing mechanism. For microbead suspensions, the advancement of the contact line is faster as compared to the recession of the contact line for the same flow rate. The presence of microbeads assists in the advancement and the recession of the contact line of the suspension. A decrease in the equilibrium contact angles with an increase in the microbead suspension volume fraction is observed. Inclusion of microbeads in the suspension increases the wetting capability for the considered combination of the microbead suspension and substrate. Finally, empirical correlations for the surface tension and the contact angle of the suspension as a function of microbead volume fraction are proposed. Such correlations can readily be used to develop mechanistic models for the capillary transport of microbead suspensions related to LOC applications.  相似文献   

20.
The contact angle of a water droplet on the surface of a solid polymer or hydrogel (water-swollen three-dimensional network) depends on whether a hydrophilic moiety of the polymer molecule is oriented towards the air interface or towards the bulk of the solid, but not on the hydrophilicity of the molecule. Therefore, the short-range rotational mobility of a polymer molecule has a major influence on the apparent hydrophilicity of a polymer surface as measured by the contact angle of water. By the came principle, the abnormally large hysteresis effect observed in advancing and receding contact angles of water on some polymer surfaces can be attributed to the reorientation of hydrophilic moieties of polymer molecules at the surface. These factors are demonstrated by selected polymer surfaces with different degrees of mobility at the polymer-air interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号