首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The determination of ropivacaine and its major metabolites in urine was performed using microextraction in a packed syringe as an on-line sample preparation method with LC and MS/MS. The sampling sorbent utilized was polystyrene polymer. [2H7]ropivacaine was used as the internal standard. The lower LOQ was 5.0 nmol/L. The calibration curves were obtained within the concentration range 5-2000 nmol/ L in urine. The regression correlation coefficients for urine samples were > or = 0.999 for all runs. The between-batch accuracy and precision values were determined from six replicates of quality control (QC) samples at three different concentrations in human urine. The mean accuracy values for the QC samples, reported as the percentage difference from the nominal value, were in the range of 99-115%. The precisions, given as the RSDs, were in the range 1.9-11%. The present method is miniaturized and fully automated and can be used for pharmacokinetic and pharmacodynamic studies.  相似文献   

2.
Oleuropein (OE) is the cardinal bioactive compound derived from Olea europaea and possesses numerous beneficial properties for human health. However, despite the plethora of analytical methods that have studied the biological fate of olive oil‐derived bioactive compounds, no validated methodology has been published to date for the simultaneous determination of OE, along with all its major metabolites. In this study, a liquid chromatography‐electrospray ionization‐tandem mass spectrometry (LC‐ESI MS/MS) method has been developed and validated for the quantification of OE, simultaneously with its main metabolites hydroxytyrosol, 2‐(3,4‐dihydroxyphenyl)acetic acid, 4‐(2‐hydroxyethyl)‐2‐methoxy‐phenol or homovanillyl alcohol, 2‐(4‐hydroxy‐3‐methoxyphenyl)acetic acid or homovanillic acid, and elenolic acid in rat plasma matrix. Samples were analyzed by LC‐ESI MS/MS prior to and after enzymatic treatment. A solid‐phase extraction step with high mean recovery for all compounds was performed as sample pretreatment. Calibration curves were linear for all bioactive compounds over the range studied, while the method exhibited good accuracy, intra‐ and inter‐day precision. The limit of detection was in the picogram range (per milliliterof plasma) for HT and OE and in the nanogram range (per milliliter of plasma) for the other analytes, and the method was simple and rapid. The developed methodology was successfully applied for the simultaneous quantification of OE and its aforementioned metabolites in rat plasma samples, thus demonstrating its suitability for pharmacokinetics, as well as bioavailability and metabolism studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
建立了分散液相微萃取.气相色谱,质谱快速分析水中硝基苯、对硝基苯、1,3一二硝基苯和2,4-二硝基氯苯的新方法.将含有18μL氯苯(萃取荆)的0.25 mL丙酮(分散剂)作为萃取体系,快速注入到5.0 mL水溶液中.在4000r/min下离心2.0 min后,得到(10.0±0.5)μL沉积相(氯苯),取底部沉积相1.0μL进行气相色谱,质谱分析.方法线性范围0.5~50μg/L(r2=0.9986~0.9994),检出限0.2~0.5μg/L,相对标准偏差4.2%~7.3%(n=5).将该方法用于环境水样的测定,加标回收率72.9%~89.6%.  相似文献   

4.
A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for determining domperidone in human plasma. The analyte and internal standard (IS; mosapride) were isolated from plasma samples by protein precipitation with methanol (containing 0.1% formic acid). The chromatographic separation was performed on an Xterra MS C(18) Column (2.1 x 150 mm, 5.0 microm) with a gradient programme mobile phase consisting of 0.1% formic acid and acetonitrile at a flow rate of 0.30 mL/min. The total run time was 4.0 min. The analyses were carried out by multiple reaction monitoring using the parent-to-daughter combinations m/z 426 --> 175 and m/z 422 --> 198 (IS). The areas of peaks from the analyte and IS were used for quantification of domperidone. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification was 0.2 ng/mL, and the assay exhibited a linear range of 0.2-60.0 ng/mL and gave a correlation coefficient (r(2)) of 0.999 or better. Quality control samples (0.4, 0.8, 15 and 50 ng/mL) in six replicates from three different analytical runs demonstrated an intra-assay precision (RSD) 4.43-6.26%, an inter-assay precision 5.25-7.45% and an overall accuracy (relative error) of <6.92%. The method can be applied to pharmacokinetic and bioequivalence studies of domperidone.  相似文献   

5.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

6.
A simple and efficient multiresidue method using dispersive solid phase extraction and liquid chromatography coupled with tandem mass spectrometry was developed for the targeted analysis of indaziflam and its five metabolites (indaziflam‐diaminotriazine, indaziflam‐carboxylic acid, indaziflam‐triazine indanone, indaziflam‐hydroxyethyl, and indaziflam‐olefin) in pitaya samples (including roots, plants, flowers, peels, pulp, and whole fruit). The analytes were extracted with acetonitrile, and the extracts were purified using multiwalled carbon nanotubes. The method was validated using pitaya samples spiked at 0.5, 5, and 50 µg/kg, and the average recoveries varied from 61.1 to 103.7% with relative standard deviations lower than 12.7% (= 5). This method exhibited sufficient linearity within the concentration range of 0.1–100 µg/L. The limits of detection and quantification were in the ranges of 0.001–0.1 and 0.003–0.3 µg/kg, respectively. The method was successfully applied to analyze pitaya samples in Nanning, and no indaziflam or its metabolites were detected in the samples analyzed.  相似文献   

7.
Microextraction by packed sorbent (MEPS) is a miniaturized, solid‐phase extraction (SPE) technique that works online with gas chromatography (GC) and liquid chromatography (LC). Not only is the automation process with MEPS advantageous, but the much smaller volumes of the samples, solvents and dead space in the system also provide other significant advantages such as the speed and the simplicity of the sample preparation process. In this study MEPS has been evaluated for quantification of sensory neuron‐specific receptors agonist (BAM8‐22). Owing to the instability of BAMs, the focus was on fast extraction and determination of the peptide online using LC‐MS/MS. Sorbents such as C2, C8 and ENV+ (hydroxylated polystyrene–divinylbenzene copolymer) were investigated in the present study. MEPS‐C8 gave the best results compared with C2 and ENV and it was used for the method validation. The calibration curve was obtained within the concentration range of 20.0–3045 nmol/L in plasma. The regression correlation coefficients for plasma samples were ≥0.99 for all runs (n = 6). The between‐batch accuracy and precision for BAM8‐22 ranged from ?13 to ?2.0% and from 4.0 to 14%, respectively. Additionally, the accuracy and precision for BAM22‐8 ranged from ?13 to 7.0% and from 3.0 to 12%, respectively. The present method was used for pharmacokinetic studies for BAMs in plasma samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The development and validation of an assay for the determination of paclitaxel in human plasma, human brain tumor tissue, mouse plasma and mouse brain tumor tissue is described. Paclitaxel was extracted from the matrices using liquid-liquid extraction with tert-butyl methyl ether, followed by chromatographic analysis using an alkaline eluent. Positive ionization electrospray tandem mass spectrometry was performed for selective and sensitive detection. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicate that calibration standards in human plasma can be used to quantify paclitaxel in all tested matrices. In human samples, the validated range for paclitaxel was from 0.25-1000 ng ml(-1) using 200 microl plasma aliquots and from 5 to 5000 ng g(-1) using 50 microl tumor homogenate aliquots (0.2 g tissue ml(-1) control human plasma). In mice, the ranges were 1-1000 ng ml(-1) and 5-5000 ng g(-1) using 50 microl of mouse plasma and 50 microl of tumor homogenate aliquots (0.2 g tissue ml(-1) control human plasma), respectively. The method can be applied to studies generating only small sample volumes (e.g. mouse plasma and tumor tissue), but also to studies in human plasma requiring a lower limit of quantitation. The assay was applied successfully to several studies with both human and mouse samples.  相似文献   

9.
Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. It is mainly metabolized by phase 1 and 2 reactions in the liver, and thus it could be involved in many drug–drug interactions. Therefore, the study of APAP metabolism is important in toxicological and pharmacokinetic studies. The objective of this study was to develop a rapid and sensitive method for the determination of APAP and its six metabolites in rat plasma for the pharmacokinetic studies. APAP and its metabolites were separated through a Capcell Pak MGII C18 column and quantitated with a 16 min run in a triple‐quadruple mass spectrometer. The mobile phases were composed of 0.1% formic acid in either 95% water or 95% acetonitrile and analysis was performed twice in positive and negative modes. Validations such as accuracy, precision, recovery, matrix effect and stability were found to be within acceptance criteria of validation guidelines, indicating that the assay was applicable to the determination of the plasma concentrations of drug and its six metabolites. In conclusion, we developed an LC‐MS/MS method for the quantitative analysis of APAP and its six metabolites in rat plasma, and this method appears to be useful for pharmacokinetic/toxicokinetic studies of APAP and its metabolites in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Aspartame is a widely used sweetener,the long-term safety of which has been controversial ever since it was accepted for human consumption.It is unstable and can produce some harmful degradation products under certain storage conditions.A high-performance liquid chromatography/tandem mass spectrometry method was developed for the simultaneous analysis of aspartame and its four degradation products,including aspartic acid,phenylalanine,aspartyl-phenylalanine and 5-benzyl-3,6-dioxo-2-piperazieacetic acid in water and in diet soft drinks.Aspartame and its four degradation products were quantified by a matrix matched external standard calibration curve with excellent correlation coefficients.The limits of detection were 0.16–5.8 mg/L,which exhibited higher sensitivity than common methods.This method was rapid,sensitive,specific and capable of eliminating matrix interferences.It was also applied to the study of the degradation of aspartame at various pH and temperatures.The results indicated that aspartame was partly degraded under strong acidic or basic conditions and the extent of degradation increased with increasing temperature.  相似文献   

11.
A novel, sensitive and specific method for the quantitative determination of ivermectin B(1a) in animal plasma using liquid chromatography combined with positive electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is presented. Abamectin was used as the internal standard. Extraction of the samples was performed with a deproteinization step using acetonitrile. Chromatographic separation was achieved on a Nucleosil ODS 5 microm column, using gradient elution with 0.2% (v/v) acetic acid in water and 0.2% (v/v) acetic acid in acetonitrile. The method was validated according to the requirements defined by the European Community. Calibration curves using plasma fortified between 1 and 100 ng ml(-1) showed a good linear correlation (r > or = 0.9989, goodness-of-fit coefficient < or =8.1%). The trueness at 2 and 25 ng ml(-1) (n = 6) was +4.2 and -17.1%, respectively. The trueness and between-run precision for the analysis of quality control samples at 25 ng ml(-1) was -4.0 and 11.0%, respectively (n = 16). The limit of quantification of the method was 1.0 ng ml(-1), for which the trueness and precision also fell within acceptable limits. Using a signal-to-noise ratio of 3 : 1, the limit of detection was calculated to be 0.2 ng ml(-1). The specificity was demonstrated with respect to ivermectin B(1b).The method was successfully used for the quantitative determination of ivermectin B(1a) in plasma samples from treated bovines, demonstrating the usefulness of the developed method for application in the field of pharmacokinetics.  相似文献   

12.
Cyadox is a novel antimicrobial growth‐promoter of the quinoxalines. For food safety and pharmacokinetic studies, a convenient, sensitive and reproducible LC‐ESI‐MS/MS method was developed for the simultaneous determination of cyadox and its major metabolites, quinoxaline‐2‐carboxylic acid, 1,4‐bisdesoxycyadox, cyadox‐1‐monoxide and cyadox‐4‐monoxide in chicken plasma. Plasma sample was subjected to a simple deproteinisation with acetonitrile. Analysis was performed on a C18 column by detection with mass spectrometry in multiple reaction monitoring mode. A gradient elution program with 0.2% formic acid, methanol and acetonitrile was performed at a flow rate of 0.2 mL/min. The decision limits (CCαs) of five analytes in plasma ranged from 1.0 to 4.0 μg/L, and the detection capabilities (CCβs) were <10 μg/L. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The extraction recoveries of five analytes were between 87.4 and 93.9% in plasma at the spiked levels of 5 (10)–200 μg/L with the relative standard deviations <10% for each analyte. The developed method demonstrated a satisfactory applicability in real plasma samples.  相似文献   

13.
Homoegonol is a biologically active neolignan isolated from Styrax species with cytotoxic, antimicrobial, anti‐inflammatory and anti‐asthma activities. For the quantification of homoegonol in rat plasma, a selective and sensitive liquid chromatography–tandem mass spectrometric method was developed and validated for the first time using protein precipitation with methanol as a sample clean‐up procedure. The analytes were separated in an Atlantis dC18 column using a gradient elution of methanol and 0.1% formic acid, and mass‐to‐charge ratios were determined in selective reaction monitoring mode using tandem mass spectrometry with m/z 343.12 > 296.97 for homoegonol and m/z 517.30 > 282.90 for udenafil (internal standard). The standard curve was linear over the concentration ranges of 1 ? 500 ng/mL using a 30 μL rat plasma sample. The coefficient of variation and relative error for intra‐ and inter‐assay at four quality control levels were 3.9–10.0 and ‐3.3–2.7%, respectively. The overall recovery of homoegonol from rat plasma using protein precipitation was 99.7 ± 7.7%. The pharmacokinetics parameters of homoegonol were dose‐independent after both intravenous (1, 2.5 and 5 mg/kg doses) and oral (5, 10 and 20 mg/kg doses) administration in male Sprague–Dawley rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A simple, rapid, sensitive and selective liquid chromatography/electrospray tandem mass spectrometry method was developed and validated for the simultaneous quantification of cilostazol and its primary metabolite 3,4-dehydrocilostazol in human plasma using mosapride as an internal standard. The method involves a simple one-step liquid-liquid extraction with a diethyl ether and dichloromethane mixture (7:3). The analytes were chromatographed using an isocratic mobile phase on a reversed-phase C18 column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 370/288 for cilostazol, m/z 368/286 for 3,4-dehydrocilostazol and m/z 422/198 for the internal standard. The assay exhibited a linear dynamic range of 5–2,000 ng/mL for cilostazol and 5–400 ng/mL for 3,4-dehydrocilostazol in human plasma. The lower limit of quantitation was 5 ng/mL for both cilostazol and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetics, bioavailability or bioequivalence studies.   相似文献   

15.
Sparfloxacin, a fluoroquinolone antibiotic, is used for the treatment of bacterial infection. A quantification method using mass spectrometry was developed for the determination of sparfloxacin in rat plasma. After simple protein precipitation with acetonitrile, the analytes were chromatographed on a reversed‐phase C18 column and detected by liquid chromatography/tandem mass spectrometry with electrospray ionization. The accuracy and precision of the assay were in accordance with FDA regulations for validation of bioanalytical methods. This method was applied to measure the plasma sparfloxacin concentrations after a single oral administration of sparfloxacin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, sensitive and specific method to quantify nevirapine in human plasma using dibenzepine as the internal standard (IS) was developed and validated. The method employed a liquid-liquid extraction. The analyte and the IS were chromatographed on a C(18) analytical column, (150 x 4.6 mm i.d. 4 microm) and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode. The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 10-5000 ng ml(-1) (r(2) > 0.9970). The between-run precision, based on the relative standard deviation for replicate quality controls was 1.3% (30 ng ml(-1)), 2.8% (300 ng ml(-1)) and 3.6% (3000 ng ml(-1)). The between-run accuracy was 4.0, 7.0 and 6.2% for the above-mentioned concentrations, respectively. This method was employed in a bioequivalence study of two nevirapine tablet formulations (Nevirapina from Far-Manguinhos, Brazil, as a test formulation, and Viramune from Boehringer Ingelheim do Brasil Química e Farmacêutica, as a reference formulation) in 25 healthy volunteers of both sexes who received a single 200 mg dose of each formulation. The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. The 90% confidence interval (CI) of the individual ratio geometric mean for Nevirapina/Viramune was 96.4-104.5% for AUC((0-last)), 91.4-105.1% for AUC((0-infinity)) and 95.3-111.6% for C(max) (AUC = area under the curve; C(max) = peak plasma concentration). Since both 90% CI for AUC((0-last)) and AUC((0-infinity)) and C(max) were included in the 80-125% interval proposed by the US Food and Drug Administration, Nevirapina was considered bioequivalent to Viramune according to both the rate and extent of absorption.  相似文献   

17.
A high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantification of pramipexole in human plasma. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a reverse-phase column and analyzed by MS/MS in the multiple reaction monitoring mode using the respective [M + H](+) ions, m/z 212/152 for pramipexole and m/z 409/228 for the IS. The method exhibited a linear dynamic range of 200-8000 pg/mL for pramipexole in human plasma. The lower limit of quantification was 200 pg/mL with a relative standard deviation of less than 8%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. A run time of 3.5 min for each sample made it possible to analyze more than 200 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

18.
A simple, reliable and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) protocol was developed and validated for quantification of bisoprolol in human plasma. The sample was pretreated with a simple procedure of protein precipitation and an isotope‐labeled d5‐bisoprolol was used as internal standard. The chromatographic separation was performed on a Capcell Pak C18 MG III column (100 mm × 2.0 mm, 5 µm). The protonated ion of the analyte was detected in positive ionization by multiple reaction monitoring mode. The mass transition pairs of m/z 326.3 → 116.3 and m/z 331.3 → 121.3 were used to detect bisoprolol and the internal standard, respectively. Linearity, accuracy, precision, recovery, matrix effect, dilution test and stability were evaluated during method validation over the range of 0.5–100 ng/mL. The validated method was successfully applied to analyze human plasma samples in a bisoprolol bioavailability study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A liquid chromatographic/tandem mass spectrometric (LC/MS/MS) screening method was developed for the screening of 11 calcium channel blockers of the 1,4-dihydropyridine type in plasma samples for forensic and clinical cases. Plasma samples were extracted by automated solid-phase extraction. Analysis was performed using a reversed-phase C(18) column, gradient elution and a triple-quadrupole mass spectrometer with TurboIonSpray source in positive mode and multiple reaction monitoring. This method was found to be selective and sensitive for the detection of the target compounds at their therapeutic plasma concentrations.  相似文献   

20.
A specific, sensitive, rapid and reproducible method for the determination of flomoxef in human plasma using high‐performance liquid chromatography–tandem mass spectrometry was developed and validated. Flomoxef was detected using an electrospay ionization method operated in negative‐ion mode. Chromatographic separation was performed in gradient elution mode on a Luna® C18(2) column (3 μm , 20 × 4.0 mm) at a flow rate of 1 mL/min and runtime 3.5 min. The mobile phase consisted of acetonitrile and water containing 0.1% formic acid as additive. Extraction of flomoxef from plasma and precipitation of plasma proteins was performed with acetonitrile with an absolute recovery of 86.4 ± 1.6%. The calibration curve was linear with a correlation coefficient of 0.999 over the concentration range 10–5000 ng/mL and the lower limit of quantification was 10 ng/mL. The intra‐ and inter‐day precisions were <11.8%, while the accuracy ranged from 99.6 to 109.0%. A stability study of flomoxef revealed that it could be successfully analyzed at 4ºС over 24 h, but it was unstable in solutions at room temperature during short‐term storage (4 h) and several freeze–thaw cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号