共查询到20条相似文献,搜索用时 0 毫秒
1.
Pizarro C Sáenz-González C Pérez-del-Notario N González-Sáiz JM 《Journal of chromatography. A》2011,1218(12):1576-1584
A novel dispersive liquid-liquid microextraction (DLLME) method, coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS), was developed for simultaneously determining the main compounds responsible for cork taint (2,4,6-trichloranisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA) and pentachloranisole (PCA)) and Brett character (4-ethylguaiacol (EG), 4-ethylphenol (EP), 4-vinylguaiacol (VG) and 4-vinylphenol (VP)) in wines. Optimisation of DLLME procedure was performed by evaluating the type of disperser and extraction solvents and the temperature and salt addition effects. The volumes of disperser and extraction solvents were also optimised by means of a central composite design combined with desirability functions. Under optimum conditions, 5 mL of wine were extracted with an extraction mixture consisting of 1.43 mL of acetone, and 173 μL of chloroform at room temperature. The analytical characteristics of the method were evaluated. Satisfactory linearity (with correlation coefficients over 0.992), repeatability (below 11.6%) and between-days precision (below 11.0%) were obtained for all target analytes. Detection limits attained were at similar levels or even lower than the olfactory threshold of the studied compounds. Finally, the developed method was successfully applied to the analysis of wine samples. To our knowledge, this is the first time that DLLME has been applied to simultaneously determine the compounds responsible for cork taint and Brett character in wine. 相似文献
2.
Pizarro C Sáenz-González C Perez-del-Notario N González-Sáiz JM 《Journal of chromatography. A》2010,1217(49):7630-7637
A dispersive liquid-liquid microextraction (DLLME) method has been optimised for simultaneously extracting 2,4,6-trichloranisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA), pentachloroanisole (PCA), 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP), 2,4,6-tribromophenol (TBP) and pentachlorophenol (PCP) from wine. The haloanisoles and halophenols were automatically determined using a gas chromatography-electron-capture detection (GC-ECD) system. Derivatisation of halophenols was performed at the same time as DLLME. Firstly, disperser and extraction solvents, salt addition and temperature conditions were selected. Then, the volume of disperser solvent, extraction solvent and derivatisation agent, and the percentage of base were optimised by means of a central composite design combined with desirability functions. The optimal extraction-derivatisation conditions found were 1.3 mL of acetone, 150 μL of carbon tetrachloride, 75 μL of acetic anhydride and a percentage of base of 0.7%; with no salt addition and at room temperature. Under these conditions, the proposed method showed satisfactory linearity (with correlation coefficients over 0.994), repeatability (below 9.7%) and reproducibility (below 9.9%). Moreover, detection limits were lower than the olfactory threshold of the compounds. The developed method was successfully applied to the analysis of red wine samples. To our knowledge, this is the first time that DLLME has been applied to determine cork taint responsible compounds in wine. 相似文献
3.
A novel and low solvent consumption method for the sensitive determination of fungicide residues in wine samples is proposed. Analytes were extracted by dispersive liquid-liquid microextraction (DLLME) and further determined by gas chromatography-mass spectrometry (GC-MS). Under optimized conditions, a binary mixture of acetone and 1-undecanol (0.5 and 0.05 mL, respectively) was used to extract target compounds from diluted (1:1) wine samples. After centrifugation, the floating phase of 1-undecanol was solidified and separated from the liquid hydro-alcoholic matrix. Thereafter, it was allowed to melt at room temperature and injected in the GC-MS system. The method showed relative standard deviations (RSDs, %) below 13%, limits of quantification (LOQs) between 0.2 and 3.2 ng mL(-1) and linear responses for concentrations up to 300 ng mL(-1). The efficiency of the liquid-phase microextraction process was scarcely affected by the characteristics of wine samples, consequently pseudo-external standard calibration (using matrix matched standards of red and white wine) sufficed to achieve acceptable accuracy values: relative recoveries from 81 to 120%. The applicability of the method was demonstrated with commercial wine samples. 相似文献
4.
Campillo N Viñas P Martínez-Castillo N Hernández-Córdoba M 《Journal of chromatography. A》2011,1218(14):1815-1821
Microwave-assisted extraction (MAE) and dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) were evaluated for use in the extraction and preconcentration of volatile nitrosamines in meat products. Parameters affecting MAE, such as the extraction solvent used, and DLLME, including the nature and volume of the extracting and disperser solvents, extraction time, salt addition and centrifugation time, were optimized. In the MAE method, 0.25g of sample mass was extracted in 10mL NaOH (0.05M) in a closed-vessel system. For DLLME, 1.5mL of methanol (disperser solvent) containing 20μL of carbon tetrachloride (extraction solvent) was rapidly injected by syringe into 5mL of the sample extract solution (previously adjusted to pH 6), thereby forming a cloudy solution. Phase separation was performed by centrifugation, and a volume of 3μL of the sedimented phase was analyzed by GC-MS. The enrichment factors provided by DLLME varied from 220 to 342 for N-nitrosodiethylamine and N-nitrosopiperidine, respectively. The matrix effect was evaluated for different samples, and it was concluded that sample quantification can be carried out by aqueous calibration. Under the optimized conditions, detection limits ranged from 0.003 to 0.014ngmL(-1) for NPIP and NMEA, respectively (0.12-0.56ngg(-1) in the meat products). 相似文献
5.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry-selective ion monitoring (GC-MS-SIM) was applied to the determination of methyl tert-butyl ether (MTBE) in water samples. The effect of main parameters affecting the extraction efficiency was studied simultaneously. From selected parameters, volume of extraction solvent, volume of dispersive solvent, and salt concentration were optimized by means of experimental design. The statistical parameters of the derived model were R(2)=0.9987 and F=17.83. The optimal conditions were 42.0 μL for extraction solvent, 0.30 mL for disperser solvent and 5% (w/v) for sodium chloride. The calibration linear range was 0.001-370 μg L(-1). The improved detection limit with the aid of chemometrics was 0.3 ng L(-1). The relative standard deviation (RSD) with n=9 for 0.1 mg L(-1) MTBE in water with and without internal standard was 2.7% and 3.1%, respectively. Under the optimal conditions, the relative recoveries of spiked MTBE in different water samples were in the range of 100-105%. 相似文献
6.
Suitability of dispersive liquid–liquid microextraction for the in situ silylation of chlorophenols in water samples before gas chromatography with mass spectrometry 下载免费PDF全文
Trace analysis of chlorophenols in water was performed by simultaneous silylation and dispersive liquid–liquid microextraction followed by gas chromatography with mass spectrometry. Dispersive liquid–liquid microextraction was carried out using an organic solvent lighter than water (n‐hexane). The effect of different silylating reagents on the method efficiency was investigated. The influence of derivatization reagent volume, presence of catalyst and derivatization/extraction time on the yield of the derivatization reaction was studied. Different parameters affecting extraction efficiency such as kind and volume of extraction and disperser solvents, pH of the sample and addition of salt were also investigated and optimized. Under the optimum conditions, the calibration graphs were linear in the range of 0.05–100 ng/mL and the limit of detection was 0.01 ng/mL. The enrichment factors were 242, 351, and 363 for 4‐chlorophenol, 2,4‐dichlorophenol, and 2,4,6‐trichlorophenol, respectively. The values of intra‐ and inter‐day relative standard deviations were in the range of 3.0–6.4 and 6.1–9.9%, respectively. The applicability of the method was investigated by analyzing water and wastewater samples. 相似文献
7.
Asensio-Ramos M Hernández-Borges J Borges-Miquel TM Rodríguez-Delgado MÁ 《Journal of chromatography. A》2011,1218(30):4808-4816
In this work, an ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) procedure was developed for the extraction of a group of pesticides (carbendazim/benomyl, thiabendazole, fuberidazole, carbaryl and triazophos) and some of their key metabolites in soils (2-aminobenzimidazole, metabolite of carbendazim and 1-naphthol, metabolite of carbaryl) from aqueous soil extracts, using high performance liquid chromatography (HPLC) with fluorescence detection (FD). Analytes were previously extracted from four soils with different physicochemical properties (forestal, ornamental, garden and lapilli soils) by ultrasound-assisted extraction (USE). The IL 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIm][PF(6)]) and methanol (MeOH) were used as extraction and dispersion solvent, respectively, for the DLLME procedure. Factors affecting IL-DLLME (sample pH, IL amount, volume of dispersion solvent and sodium chloride percentage) were optimized by means of an experimental design, obtaining the most favorable results when using 117.5 mg of IL and 418 μL of MeOH to extract the compounds from the aqueous soil extracts at pH 5.20 containing 30% (w/v) NaCl. Calibration of the USE-IL-DLLME-HPLC-FD method was carried out for every type of soil and accuracy and precision studies were developed at two levels of concentration, finding that no significant differences existed between real and spiked concentrations (Student's t test). LODs achieved were in the low ng/g range. 相似文献
8.
Tri-, tetra- and pentachlorophenol (TCP, TeCP and PCP) can be considered the precursors in the formation of corresponding chloroanisoles, known to be powerful odorants in corks and wine. Determining the presence of these chlorophenolic compounds in cork soaking solutions (ethanol/water mixtures, 12% (v/v) ethanol used for cork quality control testing), or in wine can be achieved by acetylation/gas chromatography electron-capture detection. In order to reach the required sensitivity, a previous preconcentration step is necessary. Solid-phase extraction (SPE) and headspace solid-phase microextraction (HS-SPME) have given good results for the preconcentration of TCP, TeCP and PCP in such matrices. The use of Oasis HLB cartridges gives acceptable recoveries for the three compounds when different volumes (50-250 mL) of cork macerate with concentrations ranging from 20 to 150 ng/L are processed. Preconcentration based on HS-SPME has also been optimised with a 100 microm polydimethylsiloxane fibre and in situ derivatization. The HS-SPME method allows chlorophenols in a cork soaking solution and in wine to be determined with a limit of detection of 1 ng/L for each compound (in cork macerate) and a repeatability of around 0.5%-5% (n=8) for a concentration level of 30 ng/L. 相似文献
9.
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. 相似文献
10.
分散液相微萃取-气相色谱/质谱快速分析水中的硝基苯类化合物 总被引:3,自引:1,他引:3
建立了分散液相微萃取.气相色谱,质谱快速分析水中硝基苯、对硝基苯、1,3一二硝基苯和2,4-二硝基氯苯的新方法.将含有18μL氯苯(萃取荆)的0.25 mL丙酮(分散剂)作为萃取体系,快速注入到5.0 mL水溶液中.在4000r/min下离心2.0 min后,得到(10.0±0.5)μL沉积相(氯苯),取底部沉积相1.0μL进行气相色谱,质谱分析.方法线性范围0.5~50μg/L(r2=0.9986~0.9994),检出限0.2~0.5μg/L,相对标准偏差4.2%~7.3%(n=5).将该方法用于环境水样的测定,加标回收率72.9%~89.6%. 相似文献
11.
A new, simple, fast and high sensitive analytical method based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of nitro musks in surface water and wastewater samples is presented. Different parameters, such as the nature and volume of both the extraction and disperser solvents and the ionic strength and pH of the aqueous donor phase, were optimized. Under the selected conditions (injection of a mixture of 1 mL of acetone as disperser solvent and 50 μL of chloroform as extraction solvent, no salt addition and no pH adjustment) the figures of merit of the proposed DLLME-GC-MS method were evaluated. High enrichment factors, ranging between 230 and 314 depending on the target analyte, were achieved, which redound to limits of detection in the ng L−1 range (i.e., 4-33 ng L−1). The relative standard deviation (RSD) was below 5% for all the target analytes. Finally, the recoveries obtained for different water samples of diverse origin (sea, river, irrigation channel and water treatment plant) ranged between 87 and 116%, thus showing no matrix effects. 相似文献
12.
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid–liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography–mass spectrometry (GC–MS). A two-stage multivariate optimization approach was developed by means of a Plackett–Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8 μL; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n = 10). Limits of detection were 2 and 9 ng L−1 for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 μg L−1 and 30 ng L−1) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70–72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study. 相似文献
13.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples. 相似文献
14.
An acetylation reaction for the derivatisation of the three chlorophenols involved in cork taint was optimised using a Doehlert design for direct application in wine samples. In this first step, the optimum reaction pH, by adding different amounts of KHCO3, and the required quantity of derivatisation reagent were fixed. Then a series of parameters relevant for the headspace solid-phase microextraction process, such as desorption conditions, salt addition and agitation sample were evaluated. A simultaneous study of the type of fibre and extraction temperature was performed at five levels and based on the results obtained the rest of factors (sample volume and exposition time) that could potentially affect the extraction yields were optimised by a central composite design. According to the validation of the method, we propose here, to our knowledge, the first application of solid-phase microextraction for the direct analysis of chlorophenols in red wine samples. 相似文献
15.
A novel molecular complex-based dispersive liquid-liquid microextraction (DLLME) method was established via hydrogen bond interaction between the extractant and the analytes. In this approach, tri-n-butylphosphate (TBP), a Lewis base, was directly used, instead of the traditional water-immiscible organic solvents, as the extractant for DLLME. The phenols (p-benzenediol, m-benzenediol, o-benzenediol and phenol), which are typical Lewis acids, were successfully extracted from environmental aqueous samples. In addition, phase separation was achieved in a disposable polyethylene pipet with the open and narrow tip upside, for a collection of the above extractant layer, i.e. TBP. To achieve satisfactory extraction performance, several extraction parameters, such as type of extractant solvents, extractant volume, pH of sample solution, ionic strength of sample solution and extraction time, were optimized. Additionally, the proposed method was applied to environmental water samples. Under the optimized conditions, the limits of detection and limits of quantification for the phenols were 7-29 and 25-98 μg/L, respectively. The calibration curves showed good linearity (r(2)≥0.9961) over the investigated concentration range. The repeatability of the method was investigated by evaluating the intra- and inter-day precisions. The relative standard deviations (RSDs) obtained were lower than 11.2% and 13.9% at different concentration levels. The recoveries ranged from 83.2% to 117.8%, with RSDs less than 13.1%. The developed approach provides a new way to facilitate DLLME of organic polar compounds from aqueous solutions. Moreover, it enables a convenient collection of solvent less dense making use of a cheap and disposable polyethylene pipet. 相似文献
16.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes. 相似文献
17.
Campillo N Aguinaga N Viñas P López-García I Hernández-Córdoba M 《Journal of chromatography. A》2004,1061(1):85-91
A method based on solvent extraction and purge-and-trap capillary gas chromatography with atomic emission detection (PT-GC-AED) for the determination of 2,4,6-trichloroanisole (TCA) in wines and cork stoppers was optimized and evaluated. TCA was previously extracted from the samples in pentane and the preconcentrated extract was reconstituted in water before being injected into the chromatograph by means of the PT system. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm) emission line. Two different calibration graphs were used to quantify TCA in the cork or the wine samples, owing to the interference produced by the ethanol content in the wines. Detection limits of 25 pg g(-1) and 5 ng l(-1) were obtained for corks and wines, respectively. The method provided recoveries from spiked samples ranging from 88.5 to 102.3%, confirming the reliability of the procedure and its suitability for routine monitoring. 相似文献
18.
Salting‐out assisted liquid–liquid extraction coupled to dispersive liquid–liquid microextraction for the determination of chlorophenols in wine by high‐performance liquid chromatography 下载免费PDF全文
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%. 相似文献
19.
A simple, rapid, and efficient method, based on surfactant assisted dispersive liquid-liquid microextraction (SA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and determination of chlorophenols as model compounds in environmental water samples. A conventional cationic surfactant called cethyltrimethyl ammonium bromide (CTAB) was used as a disperser agent in the proposed approach. Thirty-five microliter of 1-octanol as an extraction solvent was injected rapidly into 11 mL aqueous sample containing 0.09 mmol L−1 of CTAB, the mixture was then shaken for 3 min to disperse the organic phase. Having the extraction procedure been completed, the mixture was centrifuged and 20 μL of collected phase was injected into HPLC for subsequent analysis. Some parameters such as the type and volume of the extraction solvent, the type and concentration of surfactant, pH, ionic strength, shaking time, extraction temperature and centrifugation time were optimized. The preconcentration factors (PFs) in a range of 187-353 were obtained under the optimum conditions. The linear range, detection limit (S/N = 3), and precision (n = 5) were 0.2-200, 0.1 μg L−1, and 4.7-6.9%, respectively. Tap water, sea water and mineral water samples were successfully analyzed for the existence of chlorophenols using the proposed method. 相似文献
20.
Cork taint is a musty off-flavour in wines mainly caused by 2,4,6-trichloroanisole, but other haloanisoles can contribute. In this work, a method for the extraction of 2,4,6-trichloroanisole, 2,4,6-tribromoanisole and 2,6-dichloroanisole has been developed. The procedure involves the extraction of the haloanisoles from cork by pressurised liquid extraction and the analysis of the extracts by both GC-μECD and GC-MS-MS. A central composite design was used to investigate the dependence of the recoveries of the analytes on the temperature, percentage pentane-diethyl ether ratio and the extraction time. Experimental data were then processed by using the multiple regression analysis in order to calculate a mathematical model representing the relationship between factors and responses and to determine the best experimental conditions for PLE method. These conditions corresponded to a temperature of 176 °C, an extraction time between 2.8 and 4 min and an 80:20 pentane:diethyl ether ratio. 相似文献