首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.  相似文献   

2.
Ge D  Lee HK 《Journal of chromatography. A》2011,1218(47):8490-8495
Zeolite imidazolate framework 8 (ZIF-8) has permanent porosity, high surface area, hydrophobic property, open metal sites and remarkable water stability. These novel properties characterize the material as being different from other moisture sensitive metal-organic frameworks and endow ZIF-8 with the potential to extract trace analytes from environmental water samples. In the present study, ZIF-8 was synthesized and used as a sorbent for micro-solid-phase extraction of 6 polycyclic aromatic hydrocarbons (PAHs) from environmental water samples for the first time. Parameters influencing the extraction efficiency such as desorption time, extraction time, desorption solvent and salt concentration were investigated. Environmental water samples collected from a local lake were processed using this novel μ-SPE procedure. ZIF-8 proved to be a very efficient extraction sorbent for the extraction of trace analytes from water samples. The limits of detection from gas chromatography-mass spectrometric analysis of PAHs were 0.002-0.012 ng/ml. The linear ranges were 0.1-50 or 0.5-50 ng/ml. The relative standard deviations for five replicates of the extractions were in the range of 2.1-8.5%.  相似文献   

3.
Jin J  Zhang Z  Li Y  Lu X  Wu L  Chen J 《Analytica chimica acta》2011,693(1-2):54-61
A new solid-phase extraction sorbent, octadecyl modified magnesium oxide (C18-MgO) microspheres, was successfully prepared in the present work. Its composition, morphology and structure were studied by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N(2) adsorption-desorption technique, and solid-state nuclear magnetic resonance (NMR). The as-synthesized C18-MgO was employed as a solid-phase extraction sorbent for the enrichment of polycyclic aromatic hydrocarbons (PAHs) in aqueous solutions. Several factors affecting the extraction efficiency of PAHs, including the type and concentration of organic modifiers, flow rate, sample volume, and the types of rinsing solvents and eluting solvents, were investigated systematically. The results demonstrated that C18-MgO was superior to MgO in terms of large volume in loading samples. In comparison with MgO and Sep-Pak C18, C18-MgO exhibited excellent extraction efficiency (>91% except for naphthalene) in respect of high recoveries under the optimized conditions. The limits of detection varied from 0.001 to 0.603 ng mL(-1) for 15 PAHs using high-performance liquid chromatography coupled with a fluorescence detector, indicating that the analytical method was highly sensitive. The proposed method was applied to enrich PAHs in tap water and acceptable recoveries (18-96%) were obtained.  相似文献   

4.
用分散液液微萃取-气相色谱/质谱法测定水样中的16种多环芳烃(PAHs)。通过实验确定最佳萃取条件为:20μL四氯化碳作萃取剂,1.0 mL乙腈作分散剂,超声萃取1 min。在优化条件下,多环芳烃的富集倍数达到216~511,方法在0.05~50μg/L范围内呈良好的线性关系,相关系数(R2)在0.9873~0.9983之间,检出限为0.0020~0.14μg/L。相对标准偏差(RSD)在3.82%~12.45%(n=6)之间。该方法成功用于实际水样中痕量多环芳烃的测定。  相似文献   

5.
Highly porous polyaniline/hexagonally ordered silica sorbent was used for fabrication of the inside needle capillary adsorption trap (INCAT) device. Polyaniline/SBA-15 nanocomposite was synthesized via chemical polymerization technique. The fabricated INCAT device was evaluated to the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography (GC)-mass spectrometry (MS). A one at-the-time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, sampling flow rate, desorption time, and desorption temperature. In optimum conditions (extraction temperature 55 °C, extraction time 20 min, ionic strength 20% (w/v), flow rate 4.5 mL min(-1), desorption temperature 270 °C, desorption time 3 min) the repeatability for one INCAT device (n = 4), expressed as relative standard deviation, was between 4.2 and 10.2% for the tested compounds. The quantitation limits for the studied compounds were between 1 and 5 pg mL(-1). The developed method was successfully applied to spring water sample which was spiked with PAHs with the relative recovery percentages of 87.3-109.1%. The developed method offers the advantage of being simple to use, with shorter analysis times, lower cost of equipment, and thermal stability.  相似文献   

6.
A sensitive method for the extraction and determination of polycyclic aromatic hydrocarbons (PAHs) using alcoholic-assisted dispersive liquid-liquid microextraction (AA-DLLME) and HPLC was developed. The extraction procedure was based on alcoholic solvents for both extraction and dispersive solvents. The effective parameters (type and volume of extraction and dispersive solvents, amount of salt and stirring time) on the extraction recovery were studied and optimized utilizing factorial design (FD) and central composite design (CCD). The best recovery was achieved by FD using 2-ethyl-1-hexanol as the extraction solvent and methanol as the dispersive solvent. The results showed that volume of dispersive solvent and stirring time had no effect on the recovery of PAHs. The optimized conditions were 145 μL of 2-ethyl-1-hexanol as the extraction solvent and 4.2% w/v of salt (NaCl) in sample solution. The enrichment factors of PAHs were in the range of 310-325 with limits of detection of 0.002-0.8 ng/mL. The linearity was 0.01-800 ng/mL for different PAHs. The relative standard deviation (RSD) for intra- and inter-day of extraction of PAHs were in the range of 1.7-7.0 and 5.6-7.3, respectively, for five measurements. The method was also successfully applied for the determination of PAHs in environmental water samples.  相似文献   

7.
In this paper, a novel SPME mode, PDMS-coated solid glass microspheres (SGMs), were prepared by sol-gel method. Using homemade thermal desorption unit coupled with CGC-FID, six PAHs as model analytes, the performance of the new mode was characterized. The new extractive phase exhibited high thermal stability and satisfactory extraction capability. The detection limits were 0.01-0.045 ng/mL, and the linearity was from 0.5 ng/mL to 96 ng/mL. The R.S.D.s of repeatability for retention time and peak area were all within 0.074% and 6.7%, respectively. The recoveries of the PAHs were 78-127% from the samples taken from river water.  相似文献   

8.
Shu MW  Leong MI  Fuh MR  Huang SD 《The Analyst》2012,137(9):2143-2150
Manual shaking-enhanced, ultrasound-assisted emulsification microextraction (MS-USAEME) combined with ultraperformance liquid chromatography (UPLC) with UV detection has been developed for the determination of five endocrine-disrupting phenols (EDPs) in seawater samples and detergent samples: 4-tert-butylphenol (4-t-BP), 4-cumylphenol (4-CP), 4-tert-octylphenol (4-t-OP), 2,4-di-tert-butylphenol (2,4-di-t-BP) and 4-nonylphenol (4-NP). Optimum conditions were found to be: 25 μL 1-bromohexadecane as extraction solvent, 5 mL of aqueous sample and 1 g of NaCl to control the ionic strength; manual shaking for 10 s; ultrasonication for 1 min; centrifugation for 3 min at 5000 rpm (speed). For MS-USAEME, manual shaking for 10 s is essential for effective extraction when the ultrasonic extraction time is as brief as 1 min. The small volume of aqueous sample enhances the effect of manual shaking significantly. For seawater samples, the limit of detection (LOD) was 0.5-2.8 ng mL(-1), the limit of quantification (LOQ) was 1.8-9.3 ng mL(-1) with the relative standard deviation (RSD) in the range 4.2-10.3%. For detergent samples, the LOD was 0.4-2.4 ng mL(-1), LOQ was 1.6-8.2 ng mL(-1) and RSD 4.7-10.0%. The relative recovery was 96-109% for seawater samples and 81-106% for the detergent samples.  相似文献   

9.
Guo L  Lee HK 《Journal of chromatography. A》2011,1218(52):9321-9327
Micro-solid-phase extraction (μ-SPE) was developed for the determination of trace level of 16 United States Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in river water samples with gas chromatography-mass spectrometry (GC-MS). In the μ-SPE device, multiwalled carbon nanotubes was employed as sorbent and was packed inside an porous polypropylene membrane "envelope" whose edges were heat-sealed to secure the contents. The μ-SPE device was placed in a stirred sample solution to extract the analytes. The porous polypropylene membrane envelope in μ-SPE device acts as a filter to exclude potential interferences, such as eliminating or reducing the influence of particles that are bigger than the pore size. After extraction, analyte desorption was carried out with a suitable organic solvent under ultrasonication. Important extraction parameters were optimized in detail, including the selection and amount of sorbent materials, the extraction temperature and extraction time, desorption solvent and desorption time, amount of organic modifier, agitation speed and sample ionic strength. Under the developed extraction conditions, the proposed method provided good linearity in the range of 0.1-50 μg/L, low limits of detection (4.2-46.5 ng/L), and good repeatability of the extractions (relative standard deviations, <12%, n=5). The developed μ-SPE method was successfully applied to the extraction of PAHs in river water samples. The μ-SPE method was demonstrated to be a fast and efficient method for the determination of PAHs from environmental water samples.  相似文献   

10.
A new cost-effective sorbent, multiwalled carbon nanotubes/poly (vinyl alcohol) cryogel composite (MWCNTs/PVA), was prepared under frozen conditions for the extraction and preconcentration of trace polycyclic aromatic hydrocarbons (PAHs) in water samples. This was followed by high performance liquid chromatography (HPLC) with fluorescence detection. The proposed method provided a high enrichment factor with an extremely high extraction efficiency (89–98%) of three spiked levels of three standard PAHs with relative standard deviations of less than 8%. The low detection limits of the method were 5, 8 and 5 ng L− 1 for benzo(a)anthracene, benzo(b)fluoranthene and benzo(a)pyrene, respectively. This method was successfully applied for the determination of the three PAHs in real water samples where they were found in the range of 7 to 22 ng L− 1. The major advantages of MWCNTs/PVA over the commercial C18 is that it can be operated at a higher loading flow rate without sorbent clogging and requires a shorter time for completion without any loss of extraction efficiency.  相似文献   

11.
A simple hydrophilic polyamide organic membrane protected micro‐solid‐phase extraction method with graphene oxide as the sorbent was developed for the enrichment of some parabens from water and vinegar samples prior to gas chromatography with mass spectrometry detection. The main experimental parameters affecting the extraction efficiencies, such as the type and amount of the sorbent, extraction time, stirring rate, salt addition, sample solution pH and desorption conditions, were investigated. Under the optimized experimental conditions, the method showed a good linearity in the range of 0.1–100.0 ng/mL for water samples and 0.5–100.0 ng/mL for vinegar samples, with the correlation coefficients varying from 0.9978 to 0.9997. The limits of detection (S/N = 3) of the method were in the range of 0.005–0.010 ng/mL for water samples and 0.01–0.05 ng/mL for vinegar samples, respectively. The recoveries of the method for the analytes at spiking levels of 5.0 and 70.0 ng/mL were between 84.6 and 106.4% with the relative standard deviations varying from 4.2 to 9.5%. The results indicated that the developed method could be a practical approach for the determination of paraben residues in water and vinegar samples.  相似文献   

12.
王超  黄肇章  邢占磊  陈烨  于建钊  刘方  袁懋 《色谱》2019,37(2):239-245
建立了在线固相萃取-液相色谱直接测定水体中16种超痕量多环芳烃(PAHs)的方法。水样经高速离心后,加入适量甲醇,配制成40%(体积分数)甲醇水溶液,直接进样2 mL至在线固相萃取流路,进行萃取富集,再通过阀切换将洗脱的PAHs转移至分析流路进行分离检测。16种PAHs在各自范围内线性关系良好,相关系数均大于0.996;方法的检出限为0.14~12.50 ng/L,其中苯并[a]芘(B(a)P)的检出限为0.38 ng/L。实际水样在10、40和200 ng/L加标水平下的加标回收率为76.1%~134.9%,RSD为0.3%~16.6%。B(a)P在1 ng/L加标水平下的回收率为71.8%~92.7%,RSD为3.9%。结果表明,该方法操作简单,灵敏度高,溶剂消耗量少,可满足水样中PAHs,尤其是B(a)P的超痕量分析要求。  相似文献   

13.
The liquid-liquid microextraction (LLME) was developed for extracting sudan dyes from red wine and fruit juice. Room temperature ionic liquid was used as the extraction solvent. The target analytes were determined by high-performance liquid chromatography. The extraction parameters were optimized. The optimal conditions are as follows: volume of [C(6)MIM][PF(6)] 50 μL; the extraction time 10 min; pH value of the sample solution 7.0; NaCl concentration in sample solution 5%. The extraction recoveries for the analytes in red wine and fruit samples are 86.79-108.28 and 68.54-85.66%, whereas RSDs are 1.42-5.12 and 1.43-6.19%, respectively. The limits of detection and quantification were 0.428 and 1.426 ng/mL for sudan I, 0.938 and 3.127 ng/mL for sudan II, 1.334 and 4.445 ng/mL for sudan III, 1.454 and 4.846 ng/mL for sudan IV, respectively. Compared with conventional liquid-liquid extraction (CLLE) and ultrasonic extraction (UE), when LLME was applied, the sample amount was less (LLME: 4 mL; CLLE: 10 mL; UE: 10 mL), the extraction time was shorter (LLME: 15 min; CLLE: 110 min; UE: 50 min) and the extraction solvent amount was less (LLME: 0.05 mL IL; CLLE: 15 mL hexane; UE: 20 mL hexane). The proposed method offers a simple, rapid and efficient sample preparation for determining sudan dyes in red wine and fruit juice samples.  相似文献   

14.
杨蕾  王保兴  侯英  杨燕 《色谱》2007,25(5):747-752
应用搅拌棒吸附萃取(SBSE)-热脱附(TDS)-气相色谱/质谱联用(GC/MS)方法测定了滇池水系(滇池和盘龙江上、中、下游)中16种多环芳烃(PAHs)的含量。方法快速简便,无有机溶剂污染,PAHs的最低检出限为1.0~468.8 pg,理论回收率在90%以上,加标回收率为83.1%~109.4%,相对标准偏差小于10%。测定结果表明,这16种多环芳烃在滇池水样中的含量为89.16 ng/L,在盘龙江上游水样中的含量为65.41 ng/L,在盘龙江中游水样中的含量为339.22 ng/L,而在盘龙江下游水样中的含量为62.25 ng/L,说明滇池水系已经受到一定的PAHs污染,加强对滇池、盘龙江中PAHs有机污染的控制势在必行。  相似文献   

15.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

16.
An inexpensive and effective sample preparation procedure for the determination of three ethylphenolic off-flavours (4-ethylphenol, 4-ethylguaiacol and 4-ethylcathecol) in wine samples is presented. Analytes were in situ acetylated and concentrated using a disposable silicone sorbent (DSS) exposed to the diluted sample. After that, the analytes were recovered with ethyl acetate and determined by gas chromatography with mass spectrometry. The influence of different parameters (volume of acetic anhydride, basic catalyst, ionic strength, sorbent format, sampling mode and extraction time) on the efficiency of derivatization and extraction steps is discussed. Under optimized conditions, 2 mL of wine were diluted with 15 mL of an aqueous solution of potassium bicarbonate (5%, m/v) in a 22 mL vessel, containing 2 g of sodium chloride. The volume of acetic anhydride and the extraction time were set at 90 μL and 2 h, and the extraction was carried out at room temperature (20±2°C). Analytes were concentrated using a silicone disc (5 mm diameter × 0.5 mm thickness) and further desorbed with 0.2 mL of ethyl acetate. The achieved limits of quantification (LOQs), defined as the concentration of each compound providing a signal 10 times higher than the baseline noise, stayed between 5 and 15 ng mL(-1). The method provided a linear response range of up to 5000 ng mL(-1) and relative recoveries from 91% to 116%. The 4-ethylphenol off-flavour was detected in most red wine samples at concentrations of up to 2700 ng mL(-1).  相似文献   

17.
Stir bar sorptive extraction (SBSE) followed by HPLC-fluorescence detection (FLD) was optimised for analysing 15 polycyclic aromatic hydrocarbons (PAHs) from water samples, especially rainfall water with low PAH content. The literature data described widely different experimental conditions for the extraction of PAHs by SBSE. A chemometric approach was therefore used to evaluate the statistically influential and/or interacting factors, among those described in the literature, and to find the best extraction and desorption conditions. Among six factors studied in a 2(6-2) fractional factorial design, only sample volume, extraction time and the interaction between both of them had significant effects on the PAH extraction recoveries. Optimal sample volume of 10 mL and extraction time of 140 min were obtained with a response surface design. For the desorption conditions, a Box-Behnken design showed that desorption time, temperature and PAH concentrations had significant effects. The best conditions were two successive desorptions with 100 microL of acetonitrile for 25 min at 50 degrees C. The optimised method was repeatable (RSD< or =5.3% for 50 ng L(-1) spiked water and < or =12.8% for 5 ng L(-1) spiked water), linear (R(2)> or =0.9956), with quantitative absolute recoveries (> or =87.8% for 50 ng L(-1) spiked water), and with the LOD between 0.2 and 1.5 ng L(-1). The optimised method was successfully applied to six-rainfall water samples collected in a suburban area. The total PAHs concentrations studied ranged from 31 to 105.1 ng L(-1). Seasonal variation was observed and on average three PAHs were at the highest concentrations (phenanthrene, fluoranthene and pyrene).  相似文献   

18.
A new sampling method of ambient air analysis using carbonized fibrous resin as a sorbent for polycyclic aromatic hydrocarbons(PAHs) was reported.The physical and chemical properties of the carbonized fibrous resins were measured.The sample pretreatment with ultrasonic extraction and subsequent clean-up elution through a silica gel column was optimized.The suitable ultrasonic extraction conditions were selected as follows:resin weight was 1.5g,ultrasonic extraction time 20min,volume of extraction solvent 100 ml and extraction operation times 2-3.The concentrated extractable organic matter was submitted to next step of clean-up procedure of adsorption chromatography on silica gel column/n-hexane and a mixture of dichloromethene:n-hexane solution 2:3(v/v).The PAHs fractions in the real samples from Changzhou,China were particularly analyzed using GC-MS data system and the data of mass spectra,retention times and scan numbers of the real samples were compared with that of the standards of 16 PAHs listed by the US EPA as “priority pollutants” of the environment. The pretreatment of samples of ambient air with carbonized fibrous resin as a sorbent for PAHs is proved to be reliable and might be used for the procedure of the determination of PAHs in atmospheric environment.  相似文献   

19.
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.  相似文献   

20.
A pyrrole-based polymer was synthesized and applied as a new sorbent for solid-phase extraction (SPE) of some environmental pollutants from water samples. Polypyrrole (PPy) was synthesized by chemical oxidation of the monomer in nonaqueous solution. SPE of selected phenols, pesticides, and polyaromatic hydrocarbons (PAHs) from aqueous samples were performed using 200 mg PPy. The determination was subsequently carried out by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The polymer showed much higher recoveries for aromatic compounds than aliphatics. Preconcentration of sample volumes up 11 led to acceptable recoveries for aromatic and other tested polar compounds. The R.S.D. for a river water sample spiked with phenols, pesticides and PAHs at sub-ppb level was lower than 10% (n = 3) and limits of detection for these compounds were between 15 and 120 ng l(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号