首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For an integer k 1 and a geometric mesh (qi)−∞ with q ε (0, ∞), let Mi,k(x): = k[qi + k](· − x)+k − 1, Ni,k(x): = (qi + kqiMi,k(x)/k, and let Ak(q) be the Gram matrix (∝Mi,kNj,k)i,jεz. It is known that Ak(q)−1 is bounded independently of q. In this paper it is shown that Ak(q)−1 is strictly decreasing for q in [1, ∞). In particular, the sharp upper bound and lower bound for Ak (q)−1 are obtained: for all q ε (0, ∞).  相似文献   

2.
LetX be a closed subset of a topological spaceF; leta(·) be a continuous map fromX intoX; let {x i} be a sequence generated iteratively bya(·) fromx 0 inX, i.e.,x i+1 =a(x i),i=0, 1, 2, ...; and letQ(x 0) be the cluster point set of {x i}. In this paper, we prove that, if there exists a pointz inQ(x 0) such that (i)z is isolated with respect toQ(x 0), (ii)z is a periodic point ofa(·) of periodp, and (iii)z possesses a sequentially compact neighborhood, then (iv)Q(x 0) containsp points, (v) the sequence {x i} is contained in a sequentially compact set, and (vi) every point inQ(x 0) possesses properties (i) and (ii). The application of the preceding results to the caseF=E n leads to the following: (vii) ifQ(x 0) contains one and only one point, then {x i} converges; (viii) ifQ(x 0) contains a finite number of points, then {x i} is bounded; and (ix) ifQ(x 0) containsp points, then every point inQ(x 0) is a periodic point ofa(·) of periodp.  相似文献   

3.
In this article we introduce the sequence spaces cI(M),c0I(M),mI(M) and m0I(M) using the Orlicz function M.We study some of the properties like solid,symmetric,sequence algebra,etc and prove some inclusion relations.  相似文献   

4.
Let (Γ,I) be the bound quiver of a cyclic quiver whose vertices correspond to the Abelian group Zd. In this paper, we list all indecomposable representations of (Γ,I) and give the conditions that those representations of them can be extended to representations of deformed preprojective algebra Πλ(Γ,I). It is shown that those representations given by extending indecomposable representations of (Γ,I) are all simple representations of Πλ(Γ,I). Therefore, it is concluded that all simple representa-tions of rest...  相似文献   

5.
Let F1(x, y),…, F2h+1(x, y) be the representatives of equivalent classes of positive definite binary quadratic forms of discriminant ?q (q is a prime such that q ≡ 3 mod 4) with integer coefficients, then the number of integer solutions of Fi(x, y) = n (i = 1,…, 2h + 1) can be calculated for each natural number n using L-functions of imaginary quadratic field Q((?q)1/2).  相似文献   

6.
Let Mn denote the algebra of all nxn complex matrices. For a given q?C with ∣Q∣≤1, we define and denote the q-numerical range of A?Mn by

Wq (A)={x ? Ay:x,y?C n , x ? x?y ? y=1,x ? y=q }

The q-numerical radius is then given by rq (A)=sup{∣z∣:z?W q (A)}. When q=1,W q (A) and r q (A) reduce to the classical numerical range of A and the classical numerical radius of A, respectively. when q≠0, another interesting quantity associated with W q (A) is the inner q-numerical radius defined by [rtilde] q (A)=inf{∣z∣:z?W q (A)}

In this paper, we describe some basic properties of W q (A), extending known results on the classical numerical range. We also study the properties of rq considered as a norm (seminorm if q=0) on Mn .Finally, we characterize those linear operators L on Mn that leave Wq ,rq of [rtilde]q invariant. Extension of some of our results to the infinite dimensional case is discussed, and open problems are mentioned.  相似文献   

7.
LetV be a finite-dimensional vector space. Given a decompositionVV=⊕ i=1,…n I i , definen quadratic algebrasQ(V, J (m)) whereJ (m)=⊕ im I i . There is also a quantum semigroupM(V; I 1, …,I n ) which acts on all these quadratic algebras. The decomposition determines as well a family of associative subalgebras of End (V k ), which we denote byA k =A k (I 1,…,I n ),k≥2. In the classical case, whenVV decomposes into the symmetric and skewsymmetric tensors,A k coincides with the image of the representation of the group algebra of the symmetric groupS k in End(V k ). LetI i,h be deformations of the subspacesI i . In this paper we give a criteria for flatness of the corresponding deformations of the quadratic algebrasQ(V, J (m),h ) and the quantum semigroupM(V;I 1,h ,…,I n,h ). It says that the deformations will be flat if the algebrasA k (I 1, …,I n ) are semisimple and under the deformation their dimension does not change. Usually, the decomposition intoI i is defined by a given semisimple operatorS onVV, for whichI i are its eigensubspaces, and the deformationsI i,h are defined by a deformationS h ofS. We consider the cases whenS h is a deformation of Hecke or Birman-Wenzl symmetry, and also the case whenS h is the Yang-Baxter operator which appears by a representation of the Drinfeld-Jimbo quantum group. Applying the flatness criteria we prove that in all these cases we obtain flat deformations of the quadratic algebras and the corresponding quantum semigroups. Partially supported by a grant from the Israel Science Foundation administered by the Israel Academy of Sciences.  相似文献   

8.
In this paper, we consider problem (P) of minimizing a quadratic function q(x)=x t Qx+c t x of binary variables. Our main idea is to use the recent Mixed Integer Quadratic Programming (MIQP) solvers. But, for this, we have to first convexify the objective function q(x). A classical trick is to raise up the diagonal entries of Q by a vector u until (Q+diag(u)) is positive semidefinite. Then, using the fact that x i 2=x i, we can obtain an equivalent convex objective function, which can then be handled by an MIQP solver. Hence, computing a suitable vector u constitutes a preprocessing phase in this exact solution method. We devise two different preprocessing methods. The first one is straightforward and consists in computing the smallest eigenvalue of Q. In the second method, vector u is obtained once a classical SDP relaxation of (P) is solved. We carry out computational tests using the generator of (Pardalos and Rodgers, 1990) and we compare our two solution methods to several other exact solution methods. Furthermore, we report computational results for the max-cut problem.  相似文献   

9.
Let M be a complete K-metric space with n-dimensional metric ρ(x, y): M × M → R n , where K is the cone of nonnegative vectors in R n . A mapping F: MM is called a Q-contraction if ρ (Fx,Fy) ⩽ Qρ (x,y), where Q: KK is a semi-additive absolutely stable mapping. A Q-contraction always has a unique fixed point x* in M, and ρ(x*,a) ⩽ (I - Q)-1 ρ(Fa, a) for every point a in M. The point x* can be obtained by the successive approximation method x k = Fx k-1, k = 1, 2,..., starting from an arbitrary point x 0 in M, and the following error estimates hold: ρ (x*, x k ) ⩽ Q k (I - Q)-1ρ(x 1, x 0) ⩽ (I - Q)-1 Q k ρ(x 1, x 0), k = 1, 2,.... Generally the mappings (I - Q)-1 and Q k do not commute. For n = 1, the result is close to M. A. Krasnosel’skii’s generalized contraction principle.  相似文献   

10.
A finite dimensional algebra A (over an algebraically closed field) is called triangular if its ordinary quiver has no oriented cycles. To each presentation (Q I) of A is attached a fundamental group π1(Q I), and A is called simply connected if π1(Q I) is trivial for every presentation of A. In this paper, we provide tools for computations with the fundamental groups, as well as criteria for simple connectedness. We find relations between the fundamental groups of A and the first Hochschild cohomology H 1 (A A).  相似文献   

11.
 The paper establishes lower bounds on the provability of 𝒟=NP and the MRDP theorem in weak fragments of arithmetic. The theory I 5 E 1 is shown to be unable to prove 𝒟=NP. This non-provability result is used to show that I 5 E 1 cannot prove the MRDP theorem. On the other hand it is shown that I 1 E 1 proves 𝒟 contains all predicates of the form (∀i≤|b|)P(i,x)^Q(i,x) where ^ is =, <, or ≤, and I 0 E 1 proves 𝒟 contains all predicates of the form (∀ib)P(i,x)=Q(i,x). Here P and Q are polynomials. A conjecture is made that 𝒟 contains NLOGTIME. However, it is shown that this conjecture would not be sufficient to imply 𝒟=N P. Weak reductions to equality are then considered as a way of showing 𝒟=NP. It is shown that the bit-wise less than predicate, ≤2, and equality are both co-NLOGTIME complete under FDLOGTIME reductions. This is used to show that if the FDLOGTIME functions are definable in 𝒟 then 𝒟=N P. Received: 13 July 2001 / Revised version: 9 April 2002 / Published online: 19 December 2002 Key words or phrases: Bounded Arithmetic – Bounded Diophantine Complexity  相似文献   

12.
We show that for every fixed A > 0 and θ > 0 there is a ϑ = ϑ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q 1 = Q 2:= n 1/2(log n)ϑ and Q 3:= (log n) θ . Then for all q 3Q 3, all reduced residues a 3 mod q 3, almost all q 2Q 2, all admissible residues a 2 mod q 2, almost all q 1Q 1 and all admissible residues a 1 mod q 1, there exists a representation n = p 1 + p 2 + p 3 with primes p i a i (q i ), i = 1, 2, 3.   相似文献   

13.
Let P,Q, and R denote the Ramanujan Eisenstein series. We compute algebraic relations in terms of P(q i ) (i=1,2,3,4), Q(q i ) (i=1,2,3), and R(q i ) (i=1,2,3). For complex algebraic numbers q with 0<|q|<1 we prove the algebraic independence over ? of any three-element subset of {P(q),P(q 2),P(q 3),P(q 4)} and of any two-element subset of {Q(q),Q(q 2),Q(q 3)} and {R(q),R(q 2),R(q 3)}, respectively. For all the results we use some expressions of $P(q^{i_{1}}), Q(q^{i_{2}}) $ , and $R(q^{i_{3}}) $ in terms of theta constants. Computer-assisted computations of functional determinants and resultants are essential parts of our proofs.  相似文献   

14.
We introduce polynomials B n i (x;ω|q), depending on two parameters q and ω, which generalize classical Bernstein polynomials, discrete Bernstein polynomials defined by Sablonnière, as well as q-Bernstein polynomials introduced by Phillips. Basic properties of the new polynomials are given. Also, formulas relating B n i (x;ω|q), big q-Jacobi and q-Hahn (or dual q-Hahn) polynomials are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Let X(t) be an N parameter generalized Lévy sheet taking values in ℝd with a lower index α, ℜ = {(s, t] = ∏ i=1 N (s i, t i], s i < t i}, E(x, Q) = {tQ: X(t) = x}, Q ∈ ℜ be the level set of X at x and X(Q) = {x: ∃tQ such that X(t) = x} be the image of X on Q. In this paper, the problems of the existence and increment size of the local times for X(t) are studied. In addition, the Hausdorff dimension of E(x, Q) and the upper bound of a uniform dimension for X(Q) are also established.  相似文献   

16.
We consider the general optimization problem (P) of selecting a continuous function x over a -compact Hausdorff space T to a metric space A, from a feasible region X of such functions, so as to minimize a functional c on X. We require that X consist of a closed equicontinuous family of functions lying in the product (over T) of compact subsets Y t of A. (An important special case is the optimal control problem of finding a continuous time control function x that minimizes its associated discounted cost c(x) over the infinite horizon.) Relative to the uniform-on-compacta topology on the function space C(T,A) of continuous functions from T to A, the feasible region X is compact. Thus optimal solutions x * to (P) exist under the assumption that c is continuous. We wish to approximate such an x * by optimal solutions to a net {P i }, iI, of approximating problems of the form minxX i c i(x) for each iI, where (1) the net of sets {X i } I converges to X in the sense of Kuratowski and (2) the net {c i } I of functions converges to c uniformly on X. We show that for large i, any optimal solution x * i to the approximating problem (P i ) arbitrarily well approximates some optimal solution x * to (P). It follows that if (P) is well-posed, i.e., limsupX i * is a singleton {x *}, then any net {x i *} I of (P i )-optimal solutions converges in C(T,A) to x *. For this case, we construct a finite algorithm with the following property: given any prespecified error and any compact subset Q of T, our algorithm computes an i in I and an associated x i * in X i * which is within of x * on Q. We illustrate the theory and algorithm with a problem in continuous time production control over an infinite horizon.  相似文献   

17.
Let R be a semiprime ring with symmetric Martindale quotient ring Q, n ≥ 2 and let f(X) = X n h(X), where h(X) is a polynomial over the ring of integers with h(0) = ±1. Then there is a ring decomposition Q = Q 1Q 2Q 3 such that Q 1 is a ring satisfying S 2n?2, the standard identity of degree 2n ? 2, Q 2 ? M n (E) for some commutative regular self-injective ring E such that, for some fixed q > 1, x q  = x for all x ∈ E, and Q 3 is a both faithful S 2n?2-free and faithful f-free ring. Applying the theorem, we characterize m-power commuting maps, which are defined by linear generalized differential polynomials, on a semiprime ring.  相似文献   

18.
Let X be a non-singular complex projective curve of genus ≥3. Choose a point xX. Let Mx be the moduli space of stable bundles of rank 2 with determinant We prove that the Chow group CHQ1(Mx) of 1-cycles on Mx with rational coefficients is isomorphic to CHQ0(X). By studying the rational curves on Mx, it is not difficult to see that there exits a natural homomorphism CH0(J)→CH1(Mx) where J denotes the Jacobian of X. The crucial point is to show that this homomorphism induces a homomorphism CH0(X)→CH1(Mx), namely, to go from the infinite dimensional object CH0(J) to the finite dimensional object CH0(X). This is proved by relating the degeneration of Hecke curves on Mx to the second term I*2 of Bloch's filtration on CH0(J). Insong Choe was supported by KOSEF (R01-2003-000-11634-0).  相似文献   

19.
Given a sequence of real or complex coefficients ci and a sequence of distinct nodes ti in a compact interval T, we prove the divergence and the unbounded divergence on superdense sets in the space C(T) of the simple quadrature formulas ∝Tx(t)du(t) = Qn(x) + Rn(x) and ∝Tw(t)x(t)dt = Qn(x) + Rn(x), where Qn(x)=∑i=1mn cix(ti), ε C(T).The divergence (not certainly unbounded) for at most one continuous function of the first simple quadrature formula, with mn = n and u(t) = t, was established by P. J. Davis in 1953.  相似文献   

20.
Summary In this paper, for q even, we construct an ovoid O 3 and a spread S of the finite classical polar space Q+(7, q) determinated by a hyperbolic quadric Q+ of PG(7, q) such that there is a subgroup of PGO + 8 (q) isomorphic to PGL2(q 3), which maps O 3 in itself and S in S and is 3-transitive on O 3 and on S; for q>2, S is not a Desarguesian spread of Q+(7, q) and O 3 is a Desarguesian ovoid.
Varietà di Segre e ovoidi dello spazio polare Q+(7, q)

Al Prof. Adriano Barlotti in occasione del suo 60o compleanno  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号