首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of single foam films prepared with tetraethylammonium perfluorooctane-sulfonate (TAPOS) were studied. Film thickness was measured as a function of NH4Cl concentration in the film forming solution. The dependence of the film disjoining pressure versus the film thickness (disjoining pressure isotherms) and the mean lifetime of the films were studied. The dependence of the film thickness on the electrolyte concentration showed the presence of an electrostatic double layer at the film surfaces. The electrostatic double layer component of the disjoining pressure was screened at a NH4Cl concentration higher than 0.2 M where Newton black films (NBFs) of 6 nm thickness were formed. These films are bilayers of amphiphile molecules and contain almost no free water. The disjoining pressure isotherms of the foam films formed with 0.001 M TAPOS were measured at two different NH4Cl concentrations (0.005 and 0.0005 M). The Deryaguin-Landau-Verwey-Overbeek (DLVO) theory describes well the isotherms with an electrostatic double layer potential of ∼140 mV. The mean lifetime, a measure of the stability of the NBFs, was measured depending on surfactant concentrations. The observation of NBF was possible above a minimum TAPOS concentration of 9.4 × 10−5 M. Above this concentration, the lifetime increases exponentially. The dependence of the film lifetime on surfactant concentration is explained by the theory for NBF-rupture by nucleation mechanism of formation of microscopic holes.  相似文献   

2.
3.
The interaction parameters of Newton black soap films stabilized by NaDS, as derived from contact angle experiments, have been interpretated in terms of the structure and the interaction forces in the films. From the film thickness and the difference between the surface excess of the salt in the film and at the bulk surface it is concluded that (a) the diffuse double-layer overlap in the film is practically complete; (b) the film only contains absorbed DS ions and an equal amount of Na+ counterions, but no salt; and (c) the double layer at the bulk surface is still partly diffuse. A model for the structure of the NB films is proposed according to which the adsorbed DS ions with their counterions form a two-dimensional square lattice at each film surface. It is found that the interaction free energy of the NB films can be explained by taking into account the electrostatic interactions between the discrete ions in the two opposing surface lattices. The model of the NB film is qualitatively in agreement with the experimental results of other workers.  相似文献   

4.
Thermodynamic equations in Part I of this series were extended so as to be applicable to electrolyte mixtures and the resultant equations were applied to the experimental results of a NaCl-decyl methyl sulfoxide (DeMS) mixture. Film thickness and contact angle of the black foam film stabilized by DeMS were measured as a function of the total molality of NaCl and DeMS at constant mole fraction of DeMS in the mixture under constant disjoining pressure. Newton black film was observed only above a certain DeMS concentration and the phase transition between common black and Newton black films took place twice as NaCl concentration increased at constant DeMS concentration. The surface densities of NaCl and DeMS at the film surface and the differences in the surface densities between the adsorbed films at the film surface and bulk one coexisting at equilibrium were numerically evaluated by applying the thermodynamic equations to the film tension obtained from the contact angle. The film states and phase transitions were clarified in terms of the film thickness and surface densities.  相似文献   

5.
6.
The disjoining pressure Pi of films of aqueous octyl-beta-glucoside (beta-C(8)G(1)) solutions with and without salt was measured as a function of the film thickness by means of a thin film pressure balance. The analysis of the experiments confirms the presence of an electrostatic double layer which dominates the long-range interactions as found in previous experiments with other non-ionic surfactants in the presence of added salt. In the absence of salt, we find a local ion concentration much higher than that of the residual ionic impurities present in the bulk solution.  相似文献   

7.
The solution behavior of the polymeric surfactant Pluronic F127 (PEO(99)PPO(65)PEO(99)) and its adsorption behavior on aqueous-silica and aqueous-air interfaces, as well as the disjoining pressure isotherms of asymmetric films (silica/aqueous film/air) containing F127, are studied. The interfacial properties of adsorbed F127 layers (the adsorbed amount Gamma and the thickness h) as well as the aqueous wetting film properties [film thickness (h) and refractive indexes] were studied via ellipsometry. The solution properties of F127 were investigated using surface tensiometry and light scattering. The interactions between the air-water and silica-water interfaces were measured with a thin film pressure balance technique (TFB) and interpreted in terms of disjoining pressure as a function of the film thickness. The relations between the behaviors of the asymmetric films, adsorption at aqueous air, and aqueous silica interfaces and the solution behavior of the polymeric surfactant are discussed. Special attention is paid to the influence of the concentrations of F127 and NaCl. Addition of electrolyte lowers the critical micelle concentration, diminishes adsorption on silica, and increases the thickness of the asymmetric film.  相似文献   

8.
用微干涉测量技术直接测定楔压等温线,研究了电解质浓度对阳离子表面活性剂TTAB在浓度大于cmc时形成黑膜厚度的影响及膜表面张力与溶液表面张力之间的差别.结果显示,黑膜厚度取决于楔压和电解质浓度,随着楔压的增加,液膜厚度减少至一定程度后几乎保持不变,表明黑膜类型的转化是阶跃式的,而电解质屏蔽了液膜两个表面电荷层间的排斥作用,故电解质浓度增加,液膜厚度变小.由楔压等温线得出的膜表面张力的结果说明一般黑膜的表面张力与溶液的表面张力并无明显差别.  相似文献   

9.
The stability of thin water films on silicon substrates coated with cationic and anionic polyelectrolytes was investigated by the thin film pressure balance technique. Depending on the surface charge of the substrate, the water films are either stable (on negatively charged wafers) or rupture rapidly (on positively charged wafers). It is supposed that this behavior is due to a negative surface charge of the free water surface. The underlying assumption that the films' stability is due to electrostatic interactions is supported by measurements of the disjoining pressure on silicon wafers with a native oxide layer, which indicates a decrease of the film thickness, and thus decreasing repulsive interaction between the two film interfaces, with increasing ionic strength.  相似文献   

10.
An analytic, approximate expression for the electrostatic interaction between two membranes immersed in an electrolyte solution is derived on the basis of a simple membrane model. This model assumes that the membrane has a surface layer in which charged groups are uniformly distributed and that electrolyte ions can penetrate into the surface layer. The partition coefficients of cations and anions between the solution and the surface layer, which are related to their solubilities in the surface layer, may be different from unity.The electrostatic interaction depends on the ionic partition coefficients between the solution and the surface layer, and the relative permittivity of the surface layer, as well as on the membrane-fixed charges, the electrolyte concentration in the solution, and the surface layer thickness. It is shown, in particular, that even where the charge layer has no fixed charges, the electrostatic interaction force can be produced if the solubilities of cations and anions are different in the surface layer.  相似文献   

11.
Alpha olefin sulfonate (AOS) surfactants have shown outstanding detergency, lower adsorption on porous rocks, high compatibility with hard water and good wetting and foaming properties. These properties make AOS an excellent candidate for foam applications in enhanced oil recovery. This paper summarizes the basic properties of foam films stabilized by an AOS surfactant. The foam film thickness and contact angle between the film and its meniscus were measured as a function of NaCl and AOS concentrations. The critical AOS concentration for formation of stable films was obtained. The critical NaCl concentration for formation of stable Newton black films was found. The dependence of the film thickness on the NaCl concentration was compared to the same dependence of the contact angle experiments. With increasing NaCl concentration the film thickness decreases gradually while the contact angle (and, respectively the free energy of film formation) increases, in accordance with the classical DLVO theory.The surface tension isotherms of the AOS solutions were measured at different NaCl concentrations. They coincide on a single curve when plotted as a function of mean ionic activity product. Our data imply that the adsorption of AOS is independent of NaCl concentration at a given mean ionic activity.  相似文献   

12.
We develop a unique film holder combining a thin-film balance with AC impedance spectroscopy to measure disjoining pressure, film conductance, and film thickness simultaneously. Foam films stabilized by sodium dodecyl sulfate (SDS) are investigated with and without added sodium chloride (NaCl) electrolyte. Classical colloidal theory, Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, is tested rigorously over a wide range of solution conditions by comparing the surface charge densities fit to disjoining-pressure isotherms with those estimated independently from film-conductance and surface-tension data. Film-conductance measurements strongly suggest that the adsorbed anionic surfactant is partially complexed with counterions. Therefore, to reconcile the different values of charge densities calculated from surface tension and film conductance with those from disjoining pressure, we propose a simple ion-binding electrostatic model. The ion-complexation framework predicts increased ion complexing with increasing solution ionic strength, in agreement with surface-tension and film-conductance data. Unfortunately, it is not possible to describe similarly the trends of the measured disjoining-pressure isotherms because the diffuse-layer charge density increases, or equivalently, the ion complexation decreases with increasing ionic strength. Accordingly, the ion-binding extension of classical DLVO theory does not permit agreement between theory and independent experimental data from surface tension, disjoining pressure, and film conductance.  相似文献   

13.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated by measuring the disjoining pressure of a microscopic horizontal film between two macroscopic emulsion drops of isoparaffinic oil (Isopar M). A special measuring cell was used for this purpose whereby the disjoining pressure Pi was measured as a function of the equivalent film thickness hw. The latter was determined using an interferometric method. In this way Pi-hw curves were established at a constant INUTEC SP1 concentration of 2x10(-5) mol.dm-3 and at various NaCl concentrations. At a constant disjoining pressure of 36 Pa, a constant temperature of 22 degrees C, and a film radius of 100 microm, hw decreased with an increase in the NaCl concentration, Cel, and reached a constant value of 11 nm at Cel=5x10(-2) mol.dm-3. This reduction in film thickness is due to the compression of the electrical double layer, and at the above critical NaCl concentration any electrostatic repulsion is removed and only steric interaction remains. This critical electrolyte concentration represents the transition from electrostatic to steric interaction. At a NaCl concentration of 2x10(-4) mol.dm-3 the Pi-hw isotherms showed a gradual decrease in hw with an increase in capillary pressure, after which there was a jump in hw from approximately 30 to approximately 7.2 nm when Pi reached a high value of 2-5.5 kPa. This jump is due to the formation of a Newton black film (NBF), giving a layer thickness of the polyfructose loops of approximately 3.6 nm. The film thickness did not change further when the pressure reached 45 kPa, indicating the high stability of the film. Pi-hw isotherms were obtained at various NaCl concentrations, namely, 5x10(-2), 5x10(-1), 1.0, and 2.0 mol.dm-3. The initial thicknesses are within the range 9-11 nm, after which a transition zone starts, corresponding to a pressure of about 0.5 kPa. In this zone all films transform to an NBF with a jump, after which the thickness remains constant with a further increase in the disjoining pressure up to 45 kPa, with no film rupture. This indicates the very high stability of the NBF in the presence of high electrolyte concentrations. The high emulsion film stability (due to strong steric repulsions between the strongly hydrated loops of polyfructose) is correlated with the bulk emulsion stability.  相似文献   

14.
Hydrophobic films of polystyrene synthesized in bulk (PS) and by emulsion polymerization in the presence of the cationic surfactant cetyltrimethylammonium bromide (PS-CTAB) or the anionic surfactant sodium dodecyl sulfate (PS-SDS) were characterized by means of ellipsometry, contact angle measurements, and atomic force microscopy. Thin (approximately 65 nm) and thick (approximately 300 nm) films were spin-coated on hydrophilic silicon wafers. PS films presented scarcely tiny holes, while PS-CTAB and PS-SDS films presented holes and protuberances. The former were attributed to dewetting effects and the latter to surfactant clusters. The films were exposed to water or to a 0.1 mol/L NaCl solution for 24 h. Ex situ measurements evidenced strong topographic alterations after the exposure to the fluid. A model based on the diffusion of water (or electrolyte) molecules to the polymer/silcon dioxide interface through holes or defects on the film edges was proposed to explain the appearance of wrinkles and protuberances. In situ ellipsometric measurements were performed and compared with simulations, which considered either a water layer between a polymer and a silcon dioxide layer or an air layer between a polymer and water (medium). In the case of thin PS films, the ellipsometric angles evidenced a very thin (0.5-1.0 nm) air layer between water and the PS films. Upon increasing the PS film thickness, no air layer could be observed by ellipsometry. Regardless of the thickness, the ellipsometric data obtained for PS-CTAB and PS-SDS films did not indicate the presence of an air layer between them and the aqueous media. The dramatic changes in the topography of PS, PS-CTAB, and PS-SDS after immersion in salt solution were explained with proposed models. From a practical point of view, this study is particularly relevant because many hydrophobic polymers are used as substrates for biomedical purposes, where the physiological ionic strength is 0.15 mol/L NaCl.  相似文献   

15.
Measurements of contact angles for water, glycerol, formamide, diiodomethane, and bromoform on a cassiterite surface covered with sodium dodecyl sulfate (SDS) film were made. The samples of cassiterite were prepared in different ways for the measurements. Using the contact angle values, the Lifshitz-van der Waals and acid-base components of cassiterite/SDS film surface free energy were determined and compared with those for a "bare" cassiterite surface. It was found that the contact angle and the components of the surface free energy depend on the pH and concentration of the SDS solution from which the adsorption layer was formed. Also, the method of preparation of cassiterite plates influences these parameters. It was also found that the hydration of the cassiterite surface in the presence of a SDS film takes place and depends on the concentration of SDS, pH, and method of sample preparation, and strongly influences the surface free energy components of cassiterite.  相似文献   

16.
The thickness of wetting films on a hydrophilic silica surface was investigated using a microinterferometric technique. Aqueous solutions of hydrophobically modified inulin (INUTEC®SP1) at various concentrations, in the presence or absence of NaCl or Na2SO4, were studied. The equilibrium film thickness (h eq) showed a complex dependence on INUTEC®SP1 concentration. At low electrolyte concentrations, h eq decreased with an increase in INUTEC®SP1 concentration, reaching a minimum at 10?6 mol dm?3. However, at high electrolyte concentrations, this dependence became less pronounced. At any given INUTEC®SP1 concentration, the equilibrium film thickness decreased with an increase in electrolyte concentration as a result of the compression of the electrical double layer reaching a minimum value. After that, the film thickness showed a small decrease with further increase in electrolyte concentration. This indicates that the electrostatic component of disjoining pressure can be neglected, and the steric repulsion of the loops and tails of INUTEC®SP1 determined the film thickness.  相似文献   

17.
The influence the pH has on the properties of foam films stabilized by the nonionic surfactant n-dodecyl-beta-d-maltoside (beta-C12G2) was studied. Foam film measurements were carried out with the thin film pressure balance (TFPB) technique using two different film holders, namely, the Scheludko-Exerowa cell and the porous plate. With the former, the equilibrium film thickness h at a given capillary pressure Pc and, with the latter, complete disjoining pressure versus thickness curves (Pi-h curves) were measured. Most of the results were obtained for 10(-4) and 10(-5) M beta-C12G2 solutions that contained 10(-3) M electrolyte. Measurements were carried out in a pH range from 3 to 9. The major results are the following: (1) For a given pH, a pronounced effect of the surfactant concentration cs is seen only if cs approximately cmc. This holds true for both low and high pH values. (2) For a given cs, at least one pronounced effect is seen if the pH is changed, namely a drop of the surface charge density down to zero when the isoelectric point (pH* and pHcr) is reached. (3) The pH of the isoelectric point increases with increasing surfactant concentration. (4) The q0-pH curve of beta-C12G2 shows two pH ranges (3-5.5 and 7-10) in which the surface charge density q0 is pH-insensitive, while a significant change of q0 was observed between pH=5.5 and 7.0. A possible explanation is given.  相似文献   

18.
A model for the adsorption of ionic surfactants on oppositely charged solid surfaces of uniform charge density is developed. The model is based on the assumption that, on the solid surface, adsorbed surfactant monomers, monolayered and bilayered surfactant aggregates of different sizes and specifically adsorbing ions of added electrolyte constitute a mixture of hard discs. It means that only excluded area interactions between the surface discs are taken into account. To avoid a rapid two-dimensional condensation of the adsorbed surfactant the potential energy per molecule in the surface aggregates, which is a sum of chemical and electrostatic interactions, is assumed to decrease linearly with the increasing aggregate size. The electrostatic interactions of ionic species with the charged solid surface are described in terms of the Guy-Chapman theory of the double layer formation. The appropriate equations for adsorption isotherms of surfactant and electrolyte ions are derived and used to predict the experimental adsorption isotherms of DTAB on the precipitated silica at two different salt concentrations in the aqueous solution, On the basis of the obtained results the evolution of the adsorbed phase structure and the charge of silica particles with an increasing surface coverage is discussed.  相似文献   

19.
The surface forces of thin water films condensed onto crystalline quartz plates have been investigated by ellipsometric measurements of film thickness as a function of disjoining pressure. Quartz substrates ranging from fully hydroxylated (contact angle − 0°) to completely dehydroxylated (contact angle − 45°) were used and the results obtained related to the theoretically predicted van der Waals and electrostatic forces present in the system. Water films on fully hydroxylated quartz are much thicker than expected, whereas films on fully dehydroxylated quartz are close to the Lifschitz prediction of dispersion forces. As the extent of dehydroxylation decreases, the adsorption isotherm approaches that obtained on fully hydroxylated quartz.  相似文献   

20.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated as a function of concentrations of electrolytes of different types (NaCl, Na2SO4, and MgSO4). At a constant disjoining pressure of 36 kPa, a constant temperature of 22 degrees C, and a film radius of 100 microm, the film thickness, hw, decreased with an increase in electrolyte concentration until a critical value, Cel,cr, was reached above which hw remained constant. Cel,cr decreased with an increase in electrolyte valency (Cel,cr = 5 x 10(-2) mol.dm(-3) for NaCl and 1 x 10(-2) mol.dm(-3) for Na2SO4 and MgSO4). The reduction in film thickness below Cel,cr could be accounted for by the compression of the electrical double layer. The Pi-hw isotherms below Cel,cr could be fitted using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (constant charge and constant potential cases were considered). At a certain pressure, the film jumped to a Newton black film. The pressure at the jump decreased with an increase in electrolyte valency as a result of the reduction of the electrostatic barrier. At electrolyte (NaCl, Na2SO4, or MgSO4) concentrations higher than Cel,cr, the jump occurred at a low pressure that was independent of the electrolyte type. The thickness of the Newton black film was independent of both the concentration and nature of the electrolytes studied. The results show clearly that the polyfructose loops and tails remain strongly hydrated both in water and in high concentrations of electrolytes of different types, and these results explain the high INUTEC SP1 emulsion stability against coalescence of emulsions prepared under such conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号