首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.  相似文献   

2.
Fixed-bed reactors randomly packed with catalysts have many disadvantages that may adversely affect the desired chemical reaction. The increasingly used monolithic reactor, in contrast, has many operational advantages; however, for a kinetically-controlled reaction, it does not contain sufficient catalyst to sustain the reaction. To address the problems associated with both randomly packed-bed reactor and the monolithic reactor, a structured packed-bed reactor was proposed and mathematical models were built for randomly packed-bed reactor and structured packed-bed reactor. Their respective performances were compared when applied to the exothermic reaction of the isopropanol–acetone–hydrogen chemical heat pump system. The results showed that the structured packed-bed reactor performed better in terms of pressure drop and heat transfer capacity, and had a lower radial temperature gradient, indicating that this reactor had a higher effective heat conductivity. Isopropanol on the catalyst particle surfaces was more concentrated near the tube wall because a wall effect existed in the boundary layer around the particle-wall contact points.  相似文献   

3.
This paper presents an experimental study on the flow characteristics of a dilute gas-solid suspension medium in a circular tube, wherein the inlet entry length and the frictional pressure drop are measured systematically. In particular, the effects of particle size on the frictional pressure-drop are examined in some detail. The spherical copper particles, whose average diameter ranges from about 45 to 170 μm, are used for the dispersed medium and the ranges of gas Reynolds number and solid loading ratio are up to 50,000 and 5 respectively. The experimental results show that the entry lengths are feasible to be correlated briefly to the apparent Reynolds number of suspension flow and also that the reduction of the frictional pressure drop is observed at the lower loading ratio for the smallest size particles.  相似文献   

4.
The development of a theoretical model for the prediction of velocity and pressure drop for the flow of a viscous power law fluid through a bed packed with uniform spherical particles is presented. The model is developed by volume averaging the equation of motion. A porous microstructure model based on a cell model is used. Numerical solution of the resulting equation is effected using a penalty Galerkin finite element method. Experimental pressure drop values for dilute solutions of carboxymethylcellulose flowing in narrow tubes packed with uniformly sized spherical particles are compared to theoretical predictions over a range of operating conditions. Overall agreement between experimental and theoretical values is within 15%. The extra pressure drop due to the presence of the wall is incorporated directly into the model through the application of the no-slip boundary condition at the container wall. The extra pressure drop reaches a maximum of about 10% of the bed pressure drop without wall effect. The wall effect increases as the ratio of tube diameter to particle diameter decreases, as the Reynolds number decreases and as the power law index increases.  相似文献   

5.
The hydrodynamics of concurrent gas-liquid downflow through a porous media of fixed bed reactor has been studied experimentally in a range of trickling flow rates. A pilot bed is packed with industrial spherical and extrudate trilobe catalysts. The industrial trilobe catalysts are packed in a bed using two different methods: random close or dense packing and random sock packing. The experiments are performed for single phase in the cases of wet and dry packed beds and for two-phase flow conditions. The comparisons of pressure drops as well as liquid holdup are carried out for the above three different porous media, random close, dense packing and random sock packing. It is shown that the pressure drop of the dense loaded bed is higher than that of spherical particles which have approximately the same porosity. The results also revealed that the bed porosity, shape and contact points of the loaded catalyst have significant effects on the dynamic liquid holdup of the TBRs. Finally, a new correlation was developed for dynamic liquid holdup and pressure drop calculation for trilobe dense and sock catalyst beds and beds which are loaded with spherical particles.  相似文献   

6.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K).

The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height.

The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height.  相似文献   


7.
Summary Steady laminar flow in the inlet of two co-axial tubes has been solved by linearising the boundary layer equation. The inlet lengths and additional pressure drop have been calculated for several diameter ratios.  相似文献   

8.
Integral forms of the boundary layer equations, coupled with an assumed n-th degree boundary layer velocity profile, are used to study the effect of injection on the laminar flow in the inlet region of a circular tube. Results are illustrated graphically for a fourth degree velocity profile. It is found that the length of the inlet region decreases with the injection parameter and also that, at a given distance from the entry, the pressure drop in the inlet region increases with the injection parameter.  相似文献   

9.
Conversion efficiency, durability and pressure drop of automotive exhaust catalysts are dependent on the flow distribution within the substrate. This study examines the effect of pulsating flow on the flow distribution within these systems. The flow distribution was measured for a range of flow rates at pulsation frequencies of 16, 32, 64 and 100 Hz. It was shown that the flow uniformity at 16 Hz was similar to the steady equivalent whereas improved uniformity was seen at the higher frequencies resulting in a reduced pressure drop. It was further found that flow maldistribution under pulsating conditions was less sensitive to increases in flow rate compared to steady-state flow. Downstream of the monolith strong pulses were observed although the pulse shapes changed across the substrate diameter. Flow maldistribution correlated well with a non-dimensional parameter derived from the inlet flow velocity, pulsation frequency and diffuser length.  相似文献   

10.
The filtration performance of the moving bed granular filter with axial flow (MBGF-AF) is investigated through a large cold experiment. The effect of different operation parameters on the filtration performance (collection efficiency, pressure drop) of the axial-flow moving bed filter is investigated in combination with the dust deposition effect and the mechanism of trapping dust by the capturing particles. The results show that the collection efficiency of MBGF-AF is enhanced by decreasing the superficial gas velocity, increasing the inlet dust concentration properly, or decreasing the moving velocity of the capturing particles. A model covering the above operation parameters is established to calculate the collection efficiency of the moving bed granular filter. It is used in a wide range of operating parameters for the MBGFs.  相似文献   

11.
Fischer–Tropsch (F–T) synthesis is an important route to achieve the clean fuel production. The performance of gas–liquid separation equipment involving in the progressive condensation and separation of light and heavy hydrocarbons in the oil-gas products has become a bottleneck restricting the smooth operation of the F–T process. In order to remove the bottleneck, a gas–liquid vortex separator with simple structure, low pressure drop and big separation capacity was designed to achieve the efficient separation between gas and droplets for a long period. The RSM (Reynolds Stress Model) and DPM (Discrete Phase Method) are employed to simulate the flow characteristics and liquid distribution in the separator. The results show that the separation efficiency is influenced by the flow field and liquid phase concentration in the annular zone. The transverse vortex at the top of spiral arm entrains the droplets with small diameter into the upper annular zone. The entrained droplets rotate upward at an angle of about 37.4°. The screw pitch between neighbor liquid threads is about 0.3 m. There is a top liquid ring in the top of annular zone, where the higher is the liquid phase concentration, the lower is the separation efficiency. It is found that by changing the operating condition and the annular zone height the vortex can be strengthened but not enlarged by the inlet velocity. The screw pitch is not affected by both inlet velocity and annular zone height. The liquid phase concentration in the top liquid ring decreases with both the increases of inlet velocity and annular zone height. The total pressure drop is almost not affected by the annular zone height but is obviously affected by the inlet velocity. When the height of annular zone is more than 940 mm, the separation efficiency is not changed. Therefore, the annular zone height of 940 mm is thought to be the most economical design.  相似文献   

12.
Influence of geometry on separation efficiency in a hydrocyclone   总被引:2,自引:0,他引:2  
A numerical study of the gas–liquid–solid multiphase flow in hydrocyclones is presented. Three models of turbulence, the RNG kε model, the Reynolds stress model and Large eddy simulation with the volume of fluid model (VOF) multiphase model for simulating air core are compared in order to predict axial and tangential velocity distributions. This presentation is mainly aimed at identifying an optimal method, used to study effective parameters, based on which, eventually, effect of inlet flow rate variations and body dimension variations such as underflow diameter, overflow diameter and cone angle on the separation performance and pressure drop are investigated. The results are then used in the simulation of particle flow described by the stochastic Lagrangian model. The results suggest that the predicted size classifications are approximately similar to those of RSM and LES methods. Predictions using the RSM model are found in agreement with experimental results with a marginal error within the range of 4 to 8%. Proceeding model validation, parametric studies have been carried out concerning the influence of velocity inlet, particle size and body dimension such as underflow and overflow diameter and cone angle. The predictions demonstrate that the flow fields in the hydrocyclones with different sizes and lengths are different, which yields different performances.  相似文献   

13.
Plug-flow reactors are very common in methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence on temperature and inlet composition distribution. The strong endothermic steam reforming reaction might result in a temperature drop at the inlet of the reactor. The strong non-uniform temperature distribution due to an endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. One of the possibilities to avoid such unfavorable conditions and control thermal circumstances inside the reforming reactor is to use it as a fuel processor in the solid oxide fuel cell (SOFC) system. The heat generated by exothermic electrochemical SOFC reactions can support the endothermic reforming reaction. Furthermore, the thermal effects of electrochemical reactions help to shape the uniform temperature distribution. To examine thermal management issues, a detailed modeling and corresponding numerical analyses of the phenomena occurring inside the internal reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. Measurements including different thermal boundary conditions, the fuel flow rate and the steam-to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones and non-uniform catalyst density distributions.  相似文献   

14.
In the pneumatic transport of polyethylene pellets in the horizontal pipeline, wavelike slugs which resemble solitary waves in an open channel are observed in a settled layer of the particles when a superficial air velocity is smaller than the saltation velocity by Zenz and those transport characteristics such as travelling velocity, length, period of appearance and pressure drop are measured. It is found that the pressure drop by the wavelike slug is estimated by the Ergun equation for the fixed bed.  相似文献   

15.
The characteristics of flow development and heat transfer in converging plane-walled channels are studied by the finite difference method. The velocity and temperature profiles in both angular and radial directions, the average Nusselt number and the pressure drop are calculated for three different taper angles. The results show that the transport process is governed by three parameters: the inlet Reynolds number, the Péclet number and the taper angle. The increase of the taper angle yields an increase of the Nusselt number and a decrease of the pressure drop.  相似文献   

16.
This article reports an experimental investigation on flow boiling heat transfer and pressure drop of refrigerant R-134a in a smooth horizontal and two microfinned tubes from different manufacturers with the same geometric characteristics. Experiments have been carried out in an experimental facility developed for change of phase studies with a test section made with 9.52 mm external diameter, 1.5 m long copper tubes, electrically heated by tape resistors wrapped on the external surface. Tests have been performed under the following conditions: inlet saturation temperature of 5 °C, vapor qualities from 5% to 90%, mass velocity from 100 to 500 kg/s m2, and a heat flux of 5 kW/m2. Experimental results indicated that the heat transfer performance was basically the same for both microfin tubes. The pressure drop is higher in the microfinned tubes in comparison to the smooth tube over the whole range of mass velocities and vapor qualities. The enhancement factor, used to evaluate the combination of heat transfer and pressure drop, is higher than one for both tubes for mass velocities lower than 300 kg/s m2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient. Some images, illustrating the flow patterns, were obtained from the visualization section, located in the exit of the test section with the same internal diameter of the tested tube.  相似文献   

17.
The three-dimension gas-particle flow in a spiral cyclone is simulated numerically in this paper. The gas flow field was obtained by solving the three-dimension Navier-Stokes equations with Reynolds Stress Model (RSM). It is shown that there are two regions in the cyclone, the steadily tangential flow in the spiral channel and the combined vortex flow in the centre. Numerical results for particles trajectories show that the initial position of the particle at the inlet plane substantially affects its trajectory in the cyclone. The particle collection efficiency curves at different inlet velocities were obtained and the effects of inlet flow rate on the performance of the spiral cyclone were presented. Numerical results also show that the increase of flow rate leads to the increase of particles collection efficiency, but the pressure drop increases sharply.  相似文献   

18.
In this paper, simple and consistent open boundary conditions are presented for the numerical simulation of viscous incompressible laminar flows. The present approach is based on an arbitrary Lagrangian-Eulerian particle method using upwind interpolation. Three kinds of inlet/outlet boundary conditions are proposed for particle methods, a pressure specified inlet/outlet condition, a velocity profile specified inlet/outlet condition, and a fully developed flow outlet condition. These inlet/outlet conditions are realized by using boundary particles and modification to the physical value such as velocity. Poiseuille flows, flows over a backward-facing step, and flows in a T-shape branch are calculated. The results are compared with those of mesh-based methods such as the finite volume method. The method presented herein exhibits accuracy and numerical stability.  相似文献   

19.
As part of a study on the effect of tube diameter on the mean drop size and liquid film flow rate in annular two-phase flow, data was obtained for the vertical upflow of an air-water system in a 20 mm internal diameter tube, held at a pressure of 1.5 bar and ambient temperature. This complements data taken in earlier experiments on 10 and 32 mm tubes. Increases in the superficial gas velocity caused reductions in the mean drop size whilst increasing the liquid mass flux in all but the lowest gas velocity case, caused the drop size to rise. Comparisons were made between the current drop size data and that from a 10 mm and 32 mm internal diameter tube, for similar conditions of temperature and pressure. The current drop size measurements, which fall between those from earlier work, confirm the dependence of drop size on tube diameter. The performance of several drop size correlations have been tested. Because the correlations do not account for the influence of tube diameter, they fail to predict the drop size data accurately. The influence of gas and liquid flow rate on the measured film flow rate show trends similar to those seen in data from the 10 mm and 32 mm diameter tubes. Models, to calculate the entrained liquid mass flux were tested; good predictions were given.  相似文献   

20.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号