首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The structural and interfacial properties of self-assembled monolayers (SAMs) on gold derived from the adsorption of a series of 1,1,1-tris(mercaptomethyl)alkanes (i.e., CH3(CH2)mC[CH2SH]3, where m = 9, 11, 13, 15) were investigated. The new SAMs, which possess uniformly low densities of alkyl chains, were characterized by ellipsometry, contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy. Additional analysis of the SAMs by X-ray photoelectron spectroscopy permitted a direct calculation of the packing densities of the SAMs on gold. The results as a whole, when compared to those obtained on SAMs generated from normal alkanethiols (CH3(CH2)m+2SH), 2-alkylpropane-1,3-dithiols (CH3(CH2)mCH[CH2SH]2), and 2-alkyl-2-methylpropane-1,3-dithiols (CH3(CH2)mC(CH3)[CH2SH]2) having analogous chain lengths, demonstrate that the 1,1,1-tris(mercaptomethyl)alkanes afford SAMs with alkyl chains having the lowest packing density and least conformational order.  相似文献   

2.
Bimolecular self-assembled monolayers (SAMs) of aromatic and aliphatic chlorosilanes were self-assembled onto silica, and their characteristics were established by contact angle measurement, near-edge X-ray absorption fine structure spectroscopy, and Fourier transform infrared spectroscopy. Three aromatic constituents (phenyltrichlorosilane, benzyltrichlorosilane, and phenethyltrichlorosilane) were studied in combination with four aliphatic coadsorbates (butyltrichlorosilane, butyldimethylchlorosilane, octadecyltrichlorosilane, and octadecyldimethylchlorosilane). Our results demonstrate that whereas SAMs made of trichlorinated organosilanes are densely packed, SAMs prepared from monochlorinated species are less dense and poorly ordered. In mixed systems, trichlorinated aromatics and trichlorinated aliphatics formed SAMs with highly tunable compositions; their surfaces were compositionally homogeneous with no large-scale domain separation. The homogeneous nature of the resulting SAM was a consequence of the formation of in-plane siloxane linkages among neighboring molecules. In contrast, when mixing monochlorinated aliphatics with trichlorinated aromatics, molecular segregation occurred. Although the two shortest aromatic species did not display significant changes in orientation upon mixing with aliphatics, the aromatic species with the longest polymethylene spacer, phenethyltrichlorosilane, displayed markedly different orientation behavior in mixtures of short- and long-chain aliphatics.  相似文献   

3.
In this work, we demonstrate the strong resistance of oligo(phosphorylcholine) (OPC) self-assembled monolayers (SAMs) to protein adsorption and cell adhesion. OPC SAMs were characterized using X-ray photoelectron spectroscopy (XPS), and protein adsorption was measured using a surface plasmon resonance (SPR) sensor. Results are compared with those of phosphorylcholine (PC) SAMs. Despite the existence of negative charge on OPC SAMs and the simple synthesis procedure of OPC thiols, OPC SAMs resist protein adsorption as effectively as or better than PC SAMs formed from highly purified PC thiols. The ease of their preparation and the effectiveness of their function make OPC SAMs an attractive alternative for creating nonfouling surfaces.  相似文献   

4.
Using a scanning probe lithography method known as nanografting in conjunction with knowledge of self-assembly chemistry, regulation of the heterogeneity of self-assembled monolayers (SAMs) is demonstrated. While nanografting in single-component thiols produces areas of SAMs with designed geometry and size, nanofabrication in mixed thiol solution yields segregated domains. The reaction mechanism in nanografting differs significantly from self-assembly in mix-and-grow methods, as proven in systematic studies reported in this article and a companion paper of theoretical calculations of the nanografting process. Knowledge of the reaction pathways enables development of methods for shifting the interplay between the kinetics and thermodynamics in SAM formation, and thus the heterogeneity of mixed SAMs. By varying fabrication parameters, such as shaving speed, and reaction conditions, such as concentration and ratio of the components, the lateral heterogeneity can be adjusted ranging from near molecular mixing to segregated domains of several to tens of nanometers.  相似文献   

5.
Negative differential resistance (NDR) peaks in the current-voltage characteristics of ferrocenylundecanethiol self-assembled monolayers are not reversible. The peaks turn to smoothly increasing currents as oxygen is removed from the system, indicating that NDR arises from the reaction of an energetic charged species with ambient oxygen.  相似文献   

6.
We have applied a recently developed method (Langmuir 2006, 22, 5509-5519) to determine charge numbers per adsorbed molecule and packing densities in self-assembled monolayers (SAMs) of octadecanethiol (C18SH), a representative long-chain thiol. Our method yields values of area per molecule that are physically reasonable, in contrast to the popular reductive desorption method, which gives molecular areas that are smaller than those determined by the van der Waals radii. In a nonadsorbing electrolyte, we were able to model the dependence of the charge number per adsorbed molecule on the electrode potential, taking into account that the desorption process is a substitution reaction between the solvent and the adsorbate. We have also shown that the charge number per adsorbed thiol is affected by the specific adsorption of the anion of the electrolyte. In the latter case, the thiol competes for adsorption sites at the surface not only with water but also with the anion of the electrolyte, and this competition has an effect on the measured charge number.  相似文献   

7.
Electronic structures at the Si/SiO2/molecule interfaces were studied by Kelvin probe techniques (contact potential difference) and compared to theoretical values derived by the Helmholtz equation. Two parameters influencing the electronic properties of n-type <100> Si/SiO2 substrates were systematically tuned: the molecular dipole of coupling agent molecules comprising the layer and the surface coverage of the chromophoric layer. The first parameter was checked using direct covalent grafting of a series of trichlorosilane-containing coupling agent molecules with various end groups causing a different dipole with the same surface number density. It was found that the change in band bending (DeltaBB) clearly indicated a major effect of passivation due to two-dimensional polysiloxane network formation, with minor differences resulting from the differences in the end groups' capacity to act as "electron traps". The change in electron affinity (DeltaEA) parameter increased upon increasing the dipole of the end group comprising the monolayer, resulting in a range of 600 mV. Moreover, a shielding effect of the aromatic spacer compared with the aliphatic spacer was found and estimated to be about 200 mV. The density effect was examined using the 4-[4-(N,N-dimethylamino phenyl)azo]pyridinium halide chromophore which has a calculated dipole of more than 10 D. It was clearly shown that upon increasing surface chromophoric coverage an increase in the electronic effects on the Si substrate was observed. However, a major consequence of depolarization was also detected while comparing the experimental and calculated values.  相似文献   

8.
In this work, we show the strong resistance of zwitterionic phosphorylcholine (PC) self-assembled monolayers (SAMs) to protein adsorption and examine key factors leading to their nonfouling behavior using both experimental and molecular simulation techniques. Zwitterions with a balanced charge and minimized dipole are excellent candidates as nonfouling materials due to their strong hydration capacity via electrostatic interactions.  相似文献   

9.
Sequence, structure, and function of peptide self-assembled monolayers   总被引:1,自引:0,他引:1  
Cysteine is commonly used to attach peptides onto gold surfaces. Here we show that the inclusion of an additional linker with a length of four residues (-PPPPC) and a rigid, hydrophobic nature is a better choice for forming peptide self-assembled monolayers (SAMs) with a well-ordered structure and high surface density. We compared the structure and function of the nonfouling peptide EKEKEKE-PPPPC-Am with EKEKEKE-C-Am. Circular dichroism, attenuated total internal reflection Fourier transform IR spectroscopy, and molecular dynamics results showed that EKEKEKE-PPPPC-Am forms a secondary structure while EKEKEKE-C-Am has a random structure. Surface plasmon resonance sensor results showed that protein adsorption on EKEKEKE-PPPPC-Am/gold is very low with small variation while protein adsorption on EKEKEKE-C-Am/gold is high with large variation. X-ray photoelectron spectroscopy results showed that both peptides have strong gold-thiol binding with the gold surface, indicating that their difference in protein adsorption is due to their assembled structures. Further experimental and simulation studies were performed to show that -PPPPC is a better linker than -PC, -PPC, and -PPPC. Finally, we extended EKEKEKE-PPPPC-Am with the cell-binding sequence RGD and demonstrated control over specific versus nonspecific cell adhesion without using poly(ethylene glycol). Adding a functional peptide to the nonfouling EK sequence avoids complex chemistries that are used for its connection to synthetic materials.  相似文献   

10.
The adsorption pattern of gold nanoparticles (AuNPs) on functionalized self-assembled monolayers (SAMs) produced on a Au(111) surface was characterized. The Au(111) was modified with 11-amino-1-undecanethiol hydrochloride (AUT), 11-mercapto-1-undecanol (MUT), or 11-mercaptoundecanoic acid (MUA) at an elevated temperature and pressure. The AuNPs aggregated on the AUT-SAM surface, whereas they were well dispersed on the MUT-SAM surface and localized on the MUA-SAM surface. The results suggest that interactions between AuNPs differ according to the degree of peeling of citrate-layer-capped AuNPs. The degree of peeling, which is related to both the surface randomness of the SAMs and the functional characteristics of the terminal group of each SAM, was discussed on the basis of scanning tunneling microscopy observations, X-ray photoelectron spectroscopic analyses, and contact angle measurements. Our study shows that AuNP patterns can be controlled by changing the terminal group of the alkyl thiol SAM on a Au(111) surface.  相似文献   

11.
The structure of self-assembled monolayers (SAMs) on the gold (111) surface is still a matter of debate despite a considerable experimental and theoretical effort. We address the problem from a new perspective, studying the influence of electrostatic interactions on the degree of disorder in COOH-terminated SAMs. We show that the HS(CH2)(n-1)COOH molecules carry two dipole moments associated with their head- and tail-groups. Depending on the coupling of these dipole moments along the molecules, the structure of the COOH-SAMs either resembles the structure of the corresponding alkanethiol monolayers (short molecules, strong dipole coupling) or shows a more complex behavior (long molecules, weak dipole coupling). In the latter case, the monolayer exhibits a crystalline-like order with respect to the hydrocarbon chains and a high degree of disorder with respect to the carboxylic head-groups. These results resolve the controversy of experimental data on the degree of order in COOH-monolayers with near-edge X-ray absorption fine structure spectroscopy (Himmel, H.-J.; Weiss, K.; J?ger, B.; Dannenberger, O.; Grunze, M.; W?ll, Ch. Langmuir 1997, 13, 4943), probing the tail-groups, showing that the monolayer is largely disordered, and the infrared data (Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. J. Am. Chem. Soc. 1990, 112, 558) on the C-H stretching modes suggesting a crystalline-like order of the hydrocarbon chains.  相似文献   

12.
Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.  相似文献   

13.
The surface stress induced during the formation of alkanethiol self-assembled monolayers (SAMs) on gold from the vapor phase was measured using a micromechanical cantilever-based chemical sensor. Simultaneous in situ thickness measurements were carried out using ellipsometry. Ex situ scanning tunneling microscopy was performed in air to ascertain the final monolayer structure. The evolution of the surface stress induced during coverage-dependent structural phase transitions reveals features not apparent in average ellipsometric thickness measurements. These results show that both the kinetics of SAM formation and the resulting SAM structure are strongly influenced both by the surface structure of the underlying gold substrate and by the impingement rate of the alkanethiol onto the gold surface. In particular, the adsorption onto gold surfaces having large, flat grains produces high-quality self-assembled monolayers. An induced compressive surface stress of 15.9 +/- 0.6 N/m results when a c(4x2) dodecanethiol SAM forms on gold. However, the SAMs formed on small-grained gold are incomplete and an induced surface stress of only 0.51 +/- 0.02 N/m results. The progression to a fully formed SAM whose alkyl chains adopt a vertical (standing-up) orientation is clearly inhibited in the case of a small-grained gold substrate and is promoted in the case of a large-grained gold substrate.  相似文献   

14.
The stability of low-density self-assembled monolayers of mercaptohexadecanoic acid on gold is studied under a variety of storage conditions--air at room temperature, argon at room temperature and 4 degrees C, and ethanol at room temperature. The structural monotony of the low-density monolayers was assessed by monitoring the alkyl chains of LDSAMs by grazing-angle Fourier transform infrared spectroscopy as a function of time. Independently of the storage conditions, both symmetric and asymmetric methylene stretches at 2923 and 2852 cm-1 decreased after 4 weeks to 2919 and 2849 cm-1, respectively. These data suggest an increased ordering of the alkyl chains that is distinctly different from that of conventional high-density monolayers of mercaptohexadecanoic acid included as a reference in this study. As a further extension of this observation, the electrochemical barrier properties of the low-density monolayers were assessed by electrochemical impedance spectroscopy and did not change significantly for any of the storage conditions over a period of 4 weeks. Moreover, X-ray photoelectron spectroscopy was used to assess the chemical changes in the low-density monolayers over time. The chemical composition was essentially unaltered for all storage conditions. Specifically, oxidation of the sulfur headgroup, a common cause of monolayer degradation, was excluded for all test conditions on the basis of XPS analysis. This study confirms excellent storage stability for low-density monolayers under commonly used storage conditions and bridges an important technological gap between these systems and conventional high-density systems.  相似文献   

15.
This article describes an electroactive substrate that displays two independent dynamic functions for controlling the adhesion of cells. The approach is based on self-assembled monolayers on gold that are patterned into regions presenting the Arg-Gly-Asp peptide cell adhesion ligand. The patterned regions differ in the electrochemical properties of the linkers that tether the peptides to the monolayer. In this work, three distinct chemistries are employed that provide for release of the ligand on application of a negative potential, release of the ligand on application of a positive potential, and no change in response to a potential. Cells were allowed to attach to a monolayer patterned into circular regions comprising the three chemistries. Treatment with electric potentials of 650 or -650 mV resulted in the selective release of adherent cells only from regions that display the relevant electroactive groups. This example establishes the preparation of dynamic substrates with multiple functions and will be important to preparing model cultures derived from multiple cell types, with control over the temporal interactions of each cell population.  相似文献   

16.
A systematic scanning tunneling microscopy (STM) study of alkanethiol self-assembled monolayers (SAMs) is presented as a function of the bias voltage, tunneling current, and tip-termini separation. Stable and etch-pit free SAMs of close-packed undecanethiol/Au(111) were obtained after annealing in ultrahigh vacuum. STM revealed two distinct c(4x2) structures with four nonequivalent molecules per unit cell. For both structures, reversible contrast variations occur upon systematically tuning the bias voltage, the current, and the tip-termini distance. These contrast transitions originate from probing the corresponding local density of states (LDOS) of each molecule and not from the reorientation of the alkanethiol chains. The STM contrast is particularly sensitive to the tip-termini separation in the range of 0.5-2.5 A, reflecting the distance-dependence of LDOS. At a fixed tip elevation, the STM contrast is less sensitive to changes in bias within 0.1-1.2 V. For the first time, we demonstrate that LDOS may override the physical height variations in the STM topographic contrast for alkanethiol SAM systems.  相似文献   

17.
We use atomic force microscopy (AFM) to determine the frictional properties of nanoscale single-asperity contacts involving octadecyltrichlorosilane (OTS) monolayers and silicon. Quantitative AFM measurements in the wearless regime are performed using both uncoated and OTS-coated silicon AFM tips in contact with both uncoated and OTS-coated silicon surfaces, providing four pairs of either self-mated or unmated interfaces. Striking differences in the frictional responses of the four pairs of interfaces are found. First, lower friction occurs with OTS present on either the tip or substrate, and friction is yet lower when OTS is present on both. Second, the shape of the friction versus load plot strongly depends on whether the substrate is coated with OTS, regardless of whether the tip is coated. Uncoated substrates exhibit the common sublinear dependence, consistent with friction being directly proportional to the area of contact. However, coated substrates exhibit an unusual superlinear dependence. These results can be explained qualitatively by invoking molecular plowing as a significant contribution to the frictional behavior of OTS. Direct in situ comparison of two intrinsic OTS structural phases on the substrate is also performed. We observe frictional contrast for different local molecular packing densities of the otherwise identical molecules. The phase with lower packing density exhibits higher friction, in agreement with related previous work, but decisively observed here in single, continuous images involving the same molecules. Lateral stiffness measurements show no distinction between the two OTS structural phases, demonstrating that the difference in friction is not due to divergent stiffnesses of the two phases. Therefore, the packing density directly affects the interface's intrinsic resistance to friction, that is, the interfacial shear strength.  相似文献   

18.
The reactions of tetrakis(dimethylamido)titanium, Ti[N(CH(3))(2)](4), with alkyltrichlorosilane self-assembled monolayers (SAMs) terminated by -OH, -NH(2), and -CH(3) groups have been investigated with X-ray photoelectron spectroscopy (XPS). For comparison, a chemically oxidized Si surface, which serves as the starting point for formation of the SAMs, has also been investigated. In this work, we examined the kinetics of adsorption, the spatial extent, and stoichiometry of the reaction. Chemically oxidized Si has been found to be the most reactive surface examined here, followed by the -OH, -NH(2), and -CH(3) terminated SAMs, in that order. On all surfaces, the reaction of Ti[N(CH(3))(2)](4) was relatively facile, as evidenced by a rather weak dependence of the initial reaction probability on substrate temperature (T(s) = -50 to 110 degrees C), and adsorption could be described by first-order Langmuirian kinetics. The use of angle-resolved XPS demonstrated clearly that the anomalous reactivity of the -CH(3) terminated SAM could be attributed to reaction of Ti[N(CH(3))(2)](4) at the SAM/SiO(2) interface. Reaction on the -NH(2) terminated SAM proved to be the "cleanest", where essentially all of the reactivity could be associated with the terminal amine group. In this case, we found that approximately one Ti[N(CH(3))(2)](4) adsorbed per two SAM molecules. On all surfaces, there was significant loss of the N(CH(3))(2) ligand, particularly at high substrate temperatures, T(s) = 110 degrees C. These results show for the first time that it is possible to attach a transition metal coordination complex from the vapor phase to a surface with an appropriately functionalized self-assembled monolayer.  相似文献   

19.
We have investigated the mechanism of UV photopatterning of binary alkanethiolate self-assembled monolayers (SAMs) adsorbed on Au(111) using time-of-flight secondary ion mass spectrometry. The SAMs were photopatterned using a 500 W Hg arc lamp. The patterning process is strongly dependent on the wavelength of light used. When an unfiltered arc lamp is employed, IR light impinges on the sample and causes considerable sample heating. Methyl-terminated SAMs with less than 14 carbons in the chain melt at the temperatures reached and become very disordered and so can be easily displaced by a second SAM. This leads to significant pattern degradation ("erosion"). SAMs with greater than 14 carbons undergo a transition to an incommensurate phase but remain stable on the surface, and the pattern is retained. When the IR light is filtered out, a different behavior is observed. UV-photopatterned methyl-terminated SAMs with 10 carbons in the chain are stable. Terminal group interactions, such as H-bonding, provide extra stabilization energy during photopatterning, so some patterns with shorter carbon chains may also be stable. The displacement of the photooxidized SAMs on the patterned surface follows kinetics similar to that of large-area SAM formation.  相似文献   

20.
The behavior of C(60) molecules deposited onto 11-phenoxyundecanethiol (phenoxy) self-assembled monolayers (SAMs) is studied using ultrahigh vacuum scanning tunneling microscopy (UHV-STM) and spectroscopy. We observe that after thermally annealing between 350 and 400 K in vacuum a combination of hexagonally close-packed islands, rectangularly packed islands, and isolated single lines of C(60) is observed when the C(60) is initially deposited on an unannealed phenoxy SAM. However, only rectangularly packed islands are found when they are deposited on a preannealed phenoxy SAM. We determine the rectangular packing to have a (2√3 × 4) rectangular unit cell with respect to the underlying Au(111) substrate. This type of C(60) structure has not been observed previously for multicomponent self-assemblies on a surface. We discuss the possible causes for the formation of this structure as well as the differences between starting on an unannealed SAM and an annealed one. This study demonstrates the capability of functionalized alkanethiol SAMs to control the growth and structure of C(60) islands during annealing depending on the structural changes of the SAM itself; by preannealing the SAM, the motion of the C(60) can be confined and unique structures resulting from interactions between the SAM molecules and C(60) can be produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号