首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electroanalysis》2005,17(8):713-718
Five plastic membrane Pb2+‐selective electrodes were prepared based on 1,4‐bis(N‐tosyl‐o‐aminophenoxy)butane I , 1,4‐bis(N‐allyl‐N‐tosyl‐o‐aminophenoxy)butane II , 1,4‐bis(N‐benzyl‐N‐tosyl‐o‐aminophenoxy)butane III , 1,4‐bis[N‐(o‐allyloxybenzyl)‐N‐tosyl‐o‐aminophenoxy]butane IV , and 1,4‐bis(N‐octyl‐N‐tosyl‐o‐aminophenoxy)butane V as neutral carriers. The electrodes exhibited nearly Nernstian responses over the concentration ranges, 2.5×10?4–4.0×10?2, 2.5×10?5–4.0×10?2, 7.9×10?5–4.0×10?2, 2.2×10?5–4.0×10?2, and 1.9×10?4–4.0×10?2 M for electrodes composed with the ionophores I–V , respectively. All electrodes showed pH range of about 4.0 to 11.5 and working temperature range of 22 to 70 °C with isothermal temperature coefficients of 1.19×10?3, 1.16×10?3, 1.16×10?3, 1.00×10?3 , and 1.32×10?3 V/°C for electrodes I–V respectively.  相似文献   

2.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

3.
An adsorptive stripping voltammetric procedure for the determination of cobalt in a complex matrices at an in situ plated lead film electrode was described. The procedure exploits the enhancement effect of a cobalt peak observed in the system Co(II)–nioxime–piperazine‐1,4‐bis(2‐ethanesulfonic acid)–cetyltrimethylammonium bromide. The calibration graph was linear from 5×10?10 to 2×10?8 mol L?1 and from 1×10?10 to 1×10?9 mol L?1 for the accumulation times 120 and 600 s, respectively. The detection limit (based on the 3 σ criterion) for Co(II) following accumulation time of 600 s was 1.1×10?11 mol L?1. The interference of high concentrations of foreign ions and surfactants was studied.  相似文献   

4.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

5.
Iodide is determined after oxidation with nitrous acid in 5 M hydrochloric acid to ICl?2. The ion-pair formed with rhodamine B is extracted into toluene and measured spectrophotometrically (0.5–5 × 10?5 M) or spectrofluorimetrically (1–10 × 10?6 M). The relative standard deviations were 1.8% for the determination of 5 × 10?6 M iodide (n = 5) by spectrofluorimetry and 2.3% (n = 50) for 1 × 10?5 M iodide by spectrophotometry. Periodate, iodate and iodine responded exactly as iodide.  相似文献   

6.
The polymerization of acrylamide (M) initiated by the Ce4+/thiourea (TU) redox system has been studied in an aqueous sulfuric acid medium at 35 ± 0.2°C under nitrogen atmosphere. The rate of polymerization is governed by the expression The activation energy is 5.9 kcal deg?1 mol?1 in the investigated temperature range 30–50°C. The molecular weight is directly proportional to the concentration of monomer and inversely proportional to the catalyst concentration. With increasing concentration of DMF molecular weight decreases. The range of concentrations for which these observations hold at sulfuric acid concentration of 2.5 × 10?2 mol/L are [monomer] = 5.0 × 10?2–3.0 × 10?1, [catalyst] = (5.0–15.0) × 10?4, and [activator] = (1.0–6.0) × 10?3 mol/L.  相似文献   

7.
A sodium ion-selective PVC membrane electrode based on di(o-methoxy)stilbenzo-24-crown-8 is reported. The electrode gives a near-Nernstian response in the range 9×10?6–1×10?2 M sodium ion and can be used in the pH range 5–8.5. Selectivity coefficients are 1.8×10?1 (K+), 2.0×10?4 (Li+) 2.5×10?2 (NH+4) and about 10?4 for Mg2+, Ca2+ and Ba2+.  相似文献   

8.
Fluorometric methods for the determination of phosphate (1.5 × 10?6–3.1 × 10?6M), diphosphate (7.0 × 10?7–2.0 × 10?6M), and triphosphate (2.0 × 10?7–2.7 × 10?6M) are described. The analytical procedure is based on the inhibition of polyphosphate ions on the oxidation of pyridoxal 2-pyridylhydrazone (PPH) by hydrogen peroxide, catalyzed by low concentrations of lead(II) ions. The reactions are followed by means of the rate of appearance of the fluorescence (λex = 355 nm, λem = 425 nm). The effect of the variables is studied. The kinetic parameters of the reactions are reported and rate equations are suggested. The results are interpreted according to the discernment of the chemistry of complex formations.  相似文献   

9.
A new voltammetric sensor, Langmuir–Blodgett (LB) film of a p‐tert‐butylcalix[4]arene derivative modified glassy carbon electrode, was designed and successfully used in simultaneous determination of Tl+ and Pb2+ by square‐wave anodic stripping voltammetry. Under the optimum experimental conditions, this newly developed sensor reveal good linear response for Tl+ and Pb2+ in the concentration range of 3×10?8–4×10?6 mol L?1 and 2×10?7–2×10?5 mol L?1 respectively. The detect limits are 2×10?8 mol L?1 for Tl+ and 8×10?8 mol L?1 for Pb2+. Using proposed method, Tl+ and Pb2+ in environment samples were determined with satisfactory results.  相似文献   

10.
An electroanalytical method for the simultaneous determination of paracetamol (PAR), caffeine (CAF), and orphenadrine (ORPH) using the square‐wave voltammetry (SWV) and a cathodically pretreated boron‐doped diamond electrode was developed. The method exhibits linear responses to PAR, CAF, and ORPH in the concentration ranges 5.4×10?7–6.1×10?5 M, 7.8×10?7–3.5×10?5 M, and 7.8×10?7–3.5×10?5 M, respectively, with detection limits of 2.3×10?7 M, 9.6×10?8 M, and 8.4×10?8 M, respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in pharmaceutical formulations.  相似文献   

11.
For the first time, a novel carbon nanotube bed electrode impregnated with silver–nanoparticles (AgNPs) for the determination of trace amounts of gabapentin (GBP) is described. We synthesized the AgNPs via a new procedure. The voltammetric behavior of the electrode was investigated by cyclic voltammetry. There were linear relationships in the ranges from 3.1×10?9 to 2.9×10?2 M and from 1.0×10?8 to 1.0×10?2 GBP with square wave and differential pulse voltammetric peak currents, respectively. The detection limits were 5.6×10?10 and 9.7×10?9 M, respectively. The electrode showed excellent response over a period of 2 months and was successfully applied in human plasma and pharmaceutical capsular products.  相似文献   

12.
《Analytical letters》2012,45(1-3):4-11
A modified Trautz–Schorigin reaction, by using tannic acid-H2O2 system for the oxidation and determination of two kinds of carbonyl compounds was developed in this paper. It was found that formaldehyde and acetaldehyde could effectively enhance the chemiluminescence signals of tannic acid–H2O2 system in alkaline medium. Under optimized conditions, the proposed method has a linear range of 7 × 10?9–1 × 10?4 mol L?1 for formaldehyde and 1 × 10?8–1 × 10?4 mol L?1 for acetaldehyde with detection limits of 9 × 10?11 and 3 × 10?10 mol L?1, respectively. The relative standard deviations for 15 repeated measurements of 1 × 10?6 mol L?1 HCHO and CH3CHO are 1.13% and 1.65%, respectively. Analysis time per sample is 35 seconds. A comparison of results found by the proposed method with those obtained by a standard reference method provided good agreement. The proposed method is simple, rapid, convenient, and sensitive.  相似文献   

13.
《Analytical letters》2012,45(6):1183-1191
Abstract

A study of the enhancement effect on the fluorescence intensity of the Eu3+–-thenoyltrifluoroacetone (TTA)–-cetyltri–-methylammonium bromide (CTMAB) and the Dy3+ pyrocatechol–-3,5-disulphonic acid (Tiron) systems by Y3+has been carried out. In the presence of yttrium the fluorescence intensity of the systems was enhanced by a factor of about 100 and 15, respectively. The fluorescence intensity was a linear function of the concentration of europium or dysprosium in the range 1.0 × 10?10–-1.0 × 10?8mol dm?3 and 8.0 × 10?8–-9.0 × 10?6mol dm?3, respectively. The detection limit was 1.0 × 10?11mol dm?3 and 1.0 × 10?10mol dm?3, respectively. The standard addition method was used for the determination of europium or dysprosium in rare earth oxides and gave satisfactory results. The mechanism of enhanced fluorescence was proposed.  相似文献   

14.
《Analytical letters》2012,45(4):675-682
Abstract

Enantioselective, potentiometric membrane electrodes (EPMEs) based on antibiotics are proposed for the enantioanalysis of L‐vesamicol. A carbon paste was modified with antibiotics (vancomycin, teicoplanin, and teicoplanin modified with acetonitrile), as chiral selectors. The EPMEs based on antibiotics were reliably used for enantiopurity tests of L‐vesamicol using the direct potentiometric technique. The following linear concentration ranges: 1.0×10?6–1.0×10?4, 1.0×10?6–1×10?3 and 1×10?7?1×10?2 mol/L; and detection limits: 1.1×10?7, 9.6×10?8, and 3.6×10?8 mol/L were determine for vancomycin, teicoplanin, and teicoplanin modified with acetonitrile–based EPMEs, respectively. The proposed EPMEs were applied for the enantioanalysis of L‐vesamicol in urine samples.  相似文献   

15.
Differential pulse cathodic adsorptive stripping (DPCAdSV) and square wave cathodic adsorptive stripping (SWCAdSV) voltammetric methods were developed for the determination of antimony and lead in gunshot residues. Linear working ranges for DPCAdSV and SWCAdSV methods were (2.0×10?9–5.0×10?7) M and (2.0×10?9–7.0×10?7) M for antimony and 2.0×10?9–3.0×10?7 M (both methods) for lead. The detection of antimony limits were found to be 1.3×10?9 M for DPCAdSV and 7.3×10?10 M for SWCAdSV while the corresponding values for lead were 3.0×10?9 M and 5.8×10?10 M. Antimony and lead contents obtained by these methods in gunshot residues are in good agreement with those obtained by graphite furnace atomic absorption spectrometric method within a confidence limit of 95%.  相似文献   

16.
A voltammetric study of the oxidation of Ceftazidime (CEFT) has been carried out at the glassy carbon electrode by cyclic, differential pulse (DPV) and square wave (SWV) voltammetry. The oxidation of CEFT was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. According to the linear relationship between the peak current and concentration, DPV and SWV voltammetric methods for CEFT assay in pharmaceutical dosage forms and human urine were developed. For analytical purposes, a well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 1.00 and 1.02 V for differential pulse and square wave voltammetric techniques, respectively. The linear response was obtained within the range of 4 × 10?6?8 × 10?5 M with a detection limit of 6 × 10?7 M for differential pulse and 4 × 10?6–2 × 10?4 M with a detection limit of 1 × 10?6 M for square wave voltammetric technique. The determination of CEFT in 0.1 M H2SO4 was possible over the 2 × 10?6–1 × 10?4 M range in urine sample for both techniques. The standard addition method was used for the recovery studies.  相似文献   

17.
Glassy carbon electrodes are modified by coating with dicyclohexyl-18-crown-6 in Nafion-117. The electrode is used for a very sensitive anodic stripping voltammetric determination of silver. High sensitivity is obtained owing to the release of crown molecules from the silver-crown complex during the deposition. The detection limit is 2×10?12 M after electrodeposition for 30 min. The recommended supporting electrolyte is 4×10?3–7×10?3 M potassium chloride in 0.01 M nitric acid with a deposition potential of ?0.30 V vs. SCE and a linear potential scan. Three typical calibration graphs were linear over the range 2×10?11–1×10?8 M for deposition times of 30, 20 and 8 min, respectively. The silver content of reagent-grade ammonium nitrate was found to be 0.48×10?4% with a relative standard deviation of 3.7% (n=7) for parallel determinations.  相似文献   

18.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

19.
Acetone-precipitated pulp from banana skins is physicall entrapped at the tip of a carbon dioxide gas-sensor and on a hydrogen peroxide sensor probe to determine oxalate potentiometrically and amperometrically in aqueous solution and inurine. The enzyme present in the tissue is oxalate oxidase. The potentiometric response has a slope of 47–50 mV/decade for 1 × 10?4 M–2 × 10?3 M oxalate with a detection limit of 2 × 10?5 M. The amperometric response is linear for 2 × 10t-5–3 × 10?4 M oxalate with a dectection limit of 2 × 10?6 M. Average recoveries of oxalate added to aqueous samples were 96.2% and 98.0%, and average relative standrd deviations were 3.8% and 3.6% for the potentiometric and amperometric systems, respectively. Oxalate was determined in six control urine samples, with relative errors of about 2.5%, by both electrode systems after a simple clean-up.  相似文献   

20.
The redox system of potassium persulfate–thiomalic acid (I1–I2) was used to initiate the polymerization of acrylamide (M) in aqueous medium. For 20–30% conversion the rate equation is where Rp is the rate of polymerization. Activation energy is 8.34 kcal deg?1 mole?1 in the investigated range of temperature 25–45°C. Mn is directly proportional to [M] and inversely to [I1]. The range of concentrations for which these observations hold at 35°C and pH 4.2 are [I1] = (1.0–3.0) × 10?3, [I2] = (3.0–7.5) × 10?3, and [M] = 5.0 × 10?2–3.0 × 10?1 mole/liter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号