首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of a passivation film (solid electrolyte interphase, SEI) at the surface of the negative electrode of full LiCoO2/graphite lithium‐ion cells using LiPF6 (1M ) in carbonate solvents as electrolyte was investigated by means of x‐ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The analyses were carried out at different potentials of the first and the fifth cycles, showing the potential‐dependent character of the surface‐film species formation. These species were mainly identified as Li2CO3 up to 3.8 V and LiF up to 4.2 V. This study shows the formation of the SEI during charging and its partial dissolution during discharge. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
We investigate the formation and distribution of the solid electrolyte interface (SEI) layer on a graphite anode with two additives [vinylethylene carbonate (VEC) and vinylene carbonate (VC)] in a formation process using XPS, field emission AES, and extreme high‐resolution SEM (XHR‐SEM) techniques, and we studied what factors play an important role in determining the formation of the SEI layer. The VEC‐derived SEI behaviors (morphology, thickness, compound, and balance over electrode position) on a graphite anode largely depend on the elevated temperature. The VC‐derived SEI layer is mostly formed in the initial charging step, showing simple growth (formation) behavior. It is suggested that the properties of the additives are important for SEI bonding configurations at the nanoscale film surface, and to achieve the stable SEI layer, there appears to be an effective formation process for the additive properties. This research highlights the challenges of developing a stable SEI layer with additives in the formation process for electric vehicle batteries and would make a contribution to the understanding of how formation conditions affect an SEI layer with respect to additive properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Ni‐based layer‐structured cathode materials are more vulnerable to moisture than conventional LiCoO2 cathodes, adsorbing more water and easily forming LiOH on the surface. This study investigated the moisture adsorption mechanism on the surface of layer‐structured cathodes. The behavior of water molecules on LiCoO2 and LiNiO2 surfaces were simulated and the structural and chemical changes during the adsorption process were analyzed by first‐principles methods. It was found that the adsorption occurs via two types of mechanism: one involving ionic interactions between Li on the crystal surface and O in the adsorbate, and the other involving covalent bonding between the transition metal (TM) on the surface and O in the adsorbate, which restores the coordination of the TM by recovering its broken bonds. The difference between the water adsorption behaviors of Ni‐based and Co‐based layer‐structured cathodes was found to be mainly due to the ionic‐interaction‐driven adsorption on the (003) surface.  相似文献   

4.
Tin‐based oxide Li2SnO3 has been synthesized by a hydrothermal route as negative material for lithium‐ion batteries. The microstructure and electrochemical properties of the as‐synthesized materials were investigated by some characterizations means and electrochemical measurements. The as‐synthesized Li2SnO3 is a porous rod, which is composed of many uniform and regular nano‐flakes with a size of 50–60 nm. Li2SnO3 also displays an electrochemical performance with high capacity and good cycling stability (510.2 mAh g?1 after 50 cycles at a current density of 60 mA g?1 between 0.0 V and 2.0 V verusus Li/Li+). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In the present work, nanofibrous composite polymer electrolytes consist of polyethylene oxide (PEO), ethylene carbonate (EC), propylene carbonate (PC), lithium perchlorate (LiClO4), and titanium dioxide (TiO2) were designed using response surface method (RSM) and synthesized via an electrospinning process. Morphological properties of the as‐prepared electrolytes were studied using SEM. FTIR spectroscopy was conducted to investigate the interaction between the components of the composites. The highest room temperature ionic conductivity of 0.085 mS.cm?1 was obtained with incorporation of 0.175 wt. % TiO2 filler into the plasticized nanofibrous electrolyte by EC. Moreover, the optimum structure was compared with a film polymeric electrolyte prepared using a film casting method. Despite more amorphous structure of the film electrolyte, the nanofibrous electrolyte showed superior ion conductivity possibly due to the highly porous structure of the nanofibrous membranes. Furthermore, the mechanical properties illustrated slight deterioration with incorporation of the TiO2 nanoparticles into the electrospun electrolytes. This investigation indicated the great potential of the electrospun structures as all‐solid‐state polymeric electrolytes applicable in lithium ion batteries.  相似文献   

6.
To discuss the source of sulfolane (SL) in decreasing the interface resistance of Li/mesophase carbon microbeads cell with lithium bis(oxalate)borate (LiBOB)‐based electrolyte, the morphology and the composition of the solid electrolyte interphase (SEI) layer on the surface of carbonaceous anode material have been investigated. Compared with the cell with 0.7 mol l?1 LiBOB‐ethylene carbonate/ethyl methyl carbonate (EMC) (1 : 1, v/v) electrolyte, the cell with 0.7 mol l?1 LiBOB‐SL/EMC (1 : 1, v/v) electrolyte shows better film‐forming characteristics in SEM (SEI) spectra. According to the results obtained from Fourier transform infrared spectroscopy, XPS, and density functional theory calculations, SL is reduced to Li2SO3 and LiO2S(CH2)8SO2Li through electrochemical processes, which happens prior to the reduction of either ethylene carbonate or EMC. It is believed that the root of impedance reduction benefits from the rich existence of sulfurous compounds in SEI layer, which are better conductors of Li+ ions than analogical carbonates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
8.
The adsorption of a range of organic molecules from toluene onto the oxidized surface of magnetron‐sputtered aluminium metal is studied using sessile drop water contact angle measurements. Molecules with different head group functionalities and various chain lengths are considered, including alkyl carboxylic acids, alkyl phosphonic acids, alkyl amines, alkyl trimethoxysilanes, alkyl trichlorosilanes and epoxy alkanes. Alkyl phosphonic and carboxylic acids are identified as readily forming the most well‐packed monolayers on the aluminium surface, whereas the others adsorb less well and the chlorosilanes polymerize as a result of combination with moisture to form a thick deposit. The high‐adsorption‐density monolayers of alkyl phosphonic and carboxylic acids were studied using polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) and x‐ray photoelectron spectroscopy (XPS): PM‐IRRAS reveals relatively poorer ordering of the C10 alkyl carboxylic acid monolayer compared with that formed from the phosphonic acid, and XPS data suggest that this is likely to relate to a lower ability to displace preadsorbed volatile organic compounds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Operational instability from processes occurring at the anode during the production of aluminum in the commercial Hall‐Héroult process may lead to an increase in undesirable fluorocarbon emissions, higher energy use, and shorter plant life. One contribution to this instability may be the possible formation of a fluorocarbon film at the electrode interface. Here, the surface composition of graphite anodes after electrolysis in molten NaF–AlF3–CaF2 at 990 °C is investigated for evidence of fluorocarbon formation using C K‐edge near edge X‐ray absorption fine structure. Fluorocarbon is identified on an anode surface after prolonged anode effect (very high overpotential with increased cell resistance) and also on an anode surface after normal electrolysis without anode effect. This provides evidence that fluorocarbon formation may occur prior to anode effect lowering the surface tension of the anode and therefore resulting in dewetting to contribute to the onset of the anode effect. Confirmation that such compounds form furthers our understanding of electrochemical reactions of graphite with fluoride and of the fundamental processes that occur in an aluminum smelter cell. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, an efficient flame retardant, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) was covalently grafted onto the surface of expandable graphite (EG). The resultant DOPO‐grafted expandable graphite (EG‐g‐DOPO) was characterized by Fourier transform infrared spectroscopy, energy dispersive spectroscopy, and X‐ray photoelectron spectroscopy (XPS), respectively. The thermal stability of EG‐g‐DOPO was also evaluated by thermogravimetric analysis (TGA). Moreover, a series of flame‐retardant ultra‐high‐molecular‐weight polyethylene (UHMWPE) composites with various concentrations of EG‐g‐DOPO were prepared and evaluated. The results show that the UHMWPE composite with 20 wt% EG‐g‐DOPO possesses a satisfactory UL‐94 flame‐retardant grade (V‐0) and a high limiting oxygen index (30.6%). The residual char of the UHMWPE composite with higher EG‐g‐DOPO concentration shows more compact and integrated, providing an efficient barrier for heat release.  相似文献   

11.
Defects were created on the surface of highly oriented pyrolytic graphite (HOPG) by sputtering with an Ar+ ion beam, then characterized using X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) at 500°C. In the XPS C1s spectrum of the sputtered HOPG, a sp3 carbon peak appeared at 285.3 eV, representing surface defects. In addition, 2 sets of peaks, the Cx and CxH ion series (where x = 1, 2, 3...), were identified in the ToF‐SIMS negative ion spectrum. In the positive ion spectrum, a series of CxH2+• ions indicating defects was observed. Annealing of the sputtered samples under Ar was conducted at different temperatures. The XPS and ToF‐SIMS spectra of the sputtered HOPG after 800°C annealing were observed to be similar to the spectra of the fresh HOPG. The sp3 carbon peak had disappeared from the C1s spectrum, and the normalized intensities of the CxH and CxH2+• ions had decreased. These results indicate that defects created by sputtering on the surface of HOPG can be repaired by high‐temperature annealing.  相似文献   

12.
Model samples of the interface of an adhesive joint containing small levels of aminopropyl triethoxysilane (APS) have been prepared in order to examine the interface formed with an aluminium substrate. X‐ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF‐SIMS) have been used to analyse and image the interface region in between the aluminium and an epoxy adhesive in order to ascertain the reactions by the organosilane which is present as a minor component within the system. It was found that APS was present at the interface between the adhesive and the substrate and that it had reacted with the substrate forming a covalent bond and was also crosslinked within the adhesive. Evidence of near to full hydrolysis of APS is also present within the spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The influence of dipping temperature and time on the surface chemistry of hot‐dipped galvanized steel sheets during the alkaline degreasing process is investigated. The surface chemistry was monitored with scanning Auger electron spectroscopy (AES), X‐ray photoelectron spectroscopy (XPS), and time‐of‐flight secondary ion mass spectroscopy (ToF‐SIMS). The results show high Al concentrations on the untreated surfaces, which are significantly reduced during alkaline degreasing. The same conclusions could be drawn for the carbon compounds that accumulate on the surface during storage. The measurements reveal a gradual reduction in surface Al as the alkali solution temperature and/or degreasing time are increased. When degreasing was conducted at 70 °C for 30 s the surface was practically free from Al, which was present only in small islands. Furthermore, the experiments showed that the thickness of the oxide film covering the surfaces before and after alkaline degreasing is approximately 20 Å. The main constituents of the film varied from ZnAl hydroxide/oxide to Zn hydroxide/oxide, before and after degreasing, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
《Electrophoresis》2017,38(3-4):540-546
In this work, we present a novel electrophoretic method that was developed for the determination of lithium and transition metals in LiNi1/3Co1/3Mn1/3O2 cathode material after microwave digestion. The cations in the digested LiNi1/3Co1/3Mn1/3O2 material were separated by CE and the element content was determined by UV/Vis detection. To characterize the precision of the measurements, the RSDs and concentrations were calculated and compared to those obtained with ICP‐optical emission spectrometry (ICP‐OES). Furthermore, a certified reference material (BCR 176R —fly ash) was investigated for all techniques. For active material components, the LOD and LOQ were determined. The LODs and LOQs for the metals determined by CE were as follows: lithium (LOD/LOQ): 17.41/62.70 μg/L, cobalt (LOD/LOQ): 348.4/1283 μg/L, manganese (LOD/LOQ): 540.2/2095 μg/L, and nickel (LOD/LOQ): 838.0/2982 μg/L. Recovery rates for lithium were in the range of 95–103%. It could be proven that with the new technique, the results for the determination of the lithium content of active material were comparable with those obtained by ICP‐OES and ion chromatography. Furthermore, the recovery rates of the transition metals were determined to be between 96 and 110% by CE and ICP‐OES.  相似文献   

15.
We have made calculations of N 1s, O 1s, Si(oxide) 2p, Hf 4f, and Si(substrate) 2p photoelectron intensities at selected emission angles for films of SiO1.6N0.4 and HfO1.9N0.1 of various thicknesses on silicon. These calculations were made with the National Institute of Standards and Technology (NIST) Database for Simulation of Electron Spectra for Surface Analysis (SESSA) to investigate effects of elastic scattering and analyzer‐acceptance angle that could be relevant in the analysis of angle‐resolved X‐ray photoelectron spectroscopy (ARXPS) experiments. The simulations were made for an XPS configuration with a fixed angle between the X‐ray source (i.e. for the sample‐tilting mode of ARXPS) and with Al and Cu Kα X‐ray sources. The no‐loss intensities changed appreciably as elastic scattering was switched ‘on’ and ‘off’, but changing the analyzer‐acceptance angle had a smaller effect. Ratios of intensities for each line from the overlayer film for the least realistic model condition (elastic scattering switched ‘off’, small analyzer‐acceptance angle) to those from the most realistic model condition (elastic scattering switched ‘on’, finite analyzer‐acceptance angle) changed relatively slowly with emission angle, but the corresponding intensity ratio for the Si(substrate) 2p line changed appreciably with emission angle. The latter changes, in particular, indicate that neglect of elastic‐scattering effects can lead to erroneous results in the analysis of measured ARXPS data. The elastic‐scattering effects were larger in HfO1.9N0.1 than in SiO1.6N0.4 (due to the larger average atomic number in the former compound) and were larger with the Al Kα X‐ray source than with the Cu Kα source because of the larger cross sections for elastic scattering at the lower photoelectron energies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Five quaternary ammonium cations, including tetramethylammonium, tetraethylammonium, hexadecyltrimethylammonium, benzyltrimethylammonium, and 1‐butyl‐3‐methylimidazolium, have been separated by capillary electrophoresis. A direct ultraviolet method has been achieved when tetrabutylammonium fluoride was the background electrolyte and meso‐octamethylcalix[4]pyrrole was the background electrolyte additive. The ultraviolet spectra of meso‐octamethylcalix[4]pyrrole and cation mixtures showed that redshifts can be attributed to the size of cations, and the maximum absorption wavelength shifted from 218 to 230 nm when tetrabutylammonium cation was substituted with tetramethylammonium cation or tetraethylammonium cation. Conductivity measurements were performed to evaluate the ion‐pairing effect of tetrabutylammonium fluoride in a mixture of acetonitrile/ethanol (80:20, v/v), and the ion‐pairing formation constant, Kip, was calculated (Kip = 14.8 ± 0.3 L/mol) using the Fuoss extended model. Ion pairing also occurs between cations of the analytes and counterion, a fluoride complex of meso‐octamethylcalix[4]pyrrole. The tetramethylammonium cations associate more strongly with this counterion than the tetraethylammonium cation that contributes to the change of selectivity in capillary electrophoresis separation. The effective mobilities of the cations with trimethyl groups, such as tetramethylammonium cation, benzyltrimethylammonium cation, and hexadecyltrimethylammonium cation, decreased faster than others with the increase of meso‐octamethylcalix[4]pyrrole concentration, highlighting the fact that the ion‐pairing effect played an important role in this method.  相似文献   

17.
A simple, rapid, and highly sensitive method for simultaneous analysis of anti‐inflammatory drugs (naproxen, ibuprofen, and mefenamic acid) in diluted human serum was developed using the electrochemically controlled solid‐phase microextraction coupled to ion mobility spectrometry. A conducting molecularly imprinted polymer film based on polypyrrole was synthesized for the selective uptake and release of drugs. The film was prepared by incorporation of a template molecule (naproxen) during the electropolymerization of pyrrole onto a platinum electrode using cyclic voltammetry method. The measured ion mobility spectrometry intensity was related to the concentration of analytes taken up into the films. The calibration graphs (naproxen, ibuprofen, and mefenamic acid) were linear in the range of 0.1–30 ng/mL and detection limits were 0.07–0.37 ng/mL and relative standard deviation was lower than 6%. On the basis of the results obtained in this work, the conducting molecularly imprinted polymer films as absorbent have been applied in the electrochemically controlled solid‐phase microextraction and ion mobility spectrometry system for the selective clean‐up and quantification of trace amounts of anti‐inflammatory drugs in human serum samples. Scanning electron microscopy has confirmed the nano‐structure morphology of the polypyrrole film.  相似文献   

18.
The self‐assembled (SA) molecular monolayers of a 3‐aminopropyltrimethoxysilane (3‐APTS) on a silicon (111) surface, and the effects of ultraviolet (UV) pre‐treatment for substrates on the assembling process have been studied using XPS and atomic force microscopy (AFM). The results show that the SA 3‐APTS molecules are bonded to the substrate surface in a nearly vertical orientation, with a thickness of the monolayer of about 0.8–1.5 nm. The SA molecular monolayers show a substantial degree of disorder in molecular packing, which are believed to result from the interactions of amine tails in the silane molecules used with surface functionalities of the substrates, and the oxygen‐containing species from the ambient. UV irradiation for silicon substrates prior to the self‐assembly reaction can enhance the assembly process and hence, significantly increase the coverage of the monolayer assembled for the substrates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The surface chemistry of a range of random poly l‐lactide‐co‐glycolide (PLGA) materials has been investigated using XPS, static secondary ion mass spectrometry (SSIMS) and gentle secondary ion mass spectrometry (G‐SIMS). The estimated mole fraction of lactide units provided by SSIMS was in good agreement with bulk composition and appeared not to have been affected by contamination. Conversely, XPS assessment of lactide compositions was unreliable due to hydrocarbon contamination contributions. In this study, we propose a novel model to demonstrate that by using SSIMS it is possible to infer the degree of trans‐esterification for PLGA co‐polymers synthesised from a mixture of lactide and glycolide homo‐dimers. This was determined by introducing two independent parameters, the ratio of trans‐esterified bonds to the total number of ester bonds, PT, and the lactide composition. The model has indicated that, for this set of polymers, PT was approximately 0.25. Furthermore, we have demonstrated that G‐SIMS successfully identified the structurally important key fragments leading to direct identification. Analysis by G‐SIMS showed that the glycolic acid units from all PLGA compositions are emitted in a lower energy‐fragmentation process than lactic acid units. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Field‐emission scanning electron microscopy (FESEM) was used to monitor pinecone‐like Cu(II) crystal growth on polymeric fibers for various growth times. In FESEM images, Cu(II) complexes and Cu(OH)2 crystal growth on poly(acryloamidino ethylene amine) and poly(acryloamidino diethylenediamine) were observed. Up to an elapsed time of 16 min, crystal growth was observed in only one direction. However, after an elapsed time of 20 h, pinecone‐like crystals covered the entire surfaces of the synthesized polymers. Fourier transform infrared spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy were used for analysis. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1238–1247, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号