首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oligo ethylene glycol layers are widely used in biosensor applications, mainly for their anti‐fouling abilities. Such surfaces are often characterized by X‐ray photoelectron spectroscopy (XPS) as this method allows a precise determination of the surface chemical composition. We show herein that X‐rays used during XPS characterization quickly and significantly degrade oligo ethylene glycol immobilized onto silica substrates. It is therefore necessary to introduce a correcting factor to assess the true (i.e. without degradation) corresponding ether contribution in the XPS spectrum of such organic layers. Eventually, fluorescence scans show the loss of anti‐fouling properties of the degraded surface, leading to greater amounts of adsorbed (fluorescently labeled) protein. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Oxygen‐related surface functional groups on diamond‐like carbon (DLC) films were derivatized with fluorine‐ and nitrogen‐related groups by the gas‐phase chemical derivatization (GCD) method, and the groups were analyzed quantitatively by X‐ray photoelectron spectroscopy (XPS). It is desirable that a derivatization reaction is unique to the target group; however, it usually causes undesirable side reactions which affect other groups. This diversity of the reactions has complicated the analysis. In this report, we have overcome the problem by applying a mathematical treatment which takes the side reactions into account. This improved analysis shows that it is no longer necessary to have derivatization reactions unique to the target groups. As a result, it is demonstrated that the carbonyl (C?O) group is the dominant surface functional group on both the DLC and its wet‐oxidized films, the carboxyl (COOH) group plays a minor role, and the presence of the hydroxyl (OH) group is logically denied. Considering the oxidation steps of these oxygen‐related surface functional groups, it is suggested that the C?O group on the DLC films requires the cleavage of the carbon–carbon bond with a relatively high activation energy barrier to change into the COOH group. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In the present work, polycrystalline CoPd alloys in varying range of bulk atomic percent composition (Co30Pd70, Co50Pd50 and Co70Pd30) are investigated by means of X‐ray photoelectron spectroscopy (XPS). The results of conventional XPS quantitative multiline (ML) approach are compared to the results obtained on the basis of XPS lines shape analysis, where the selected XPS or X‐ray induced Auger electron (XAES) transitions, are processed using the pattern recognition method known as the fuzzy k‐nearest neighbour (fkNN) rule. The fkNN rule is applied to the following spectra line shapes: Pd MNV, Co 2p, Co LMM, Pd 3d and valence band, analysing electrons in a varying range of selected kinetic energies. Both methods showed the surface segregation of Pd in Co30Pd70 and Co50Pd50 alloys. The results of the ML, the binding energy shift (ΔBE) analysis and the fkNN rule remained in agreement. Discrepancies in quantitative results obtained using different approaches are discussed within the accuracy of the applied methods, differences due to mean escape depth (MED) of electrons in considered transitions, their depth distribution function, the sensitivity of electron transition line shape on the environmental change (weaker effect for the inner shell transitions, and stronger effect for the outer shell transitions and Auger electron spectroscopy (AES) electrons transitions) and the non‐uniform depth profile concentrations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Deposition of ultra‐thin layers under computer control is a frequent requirement in studies of novel sensors, materials screening, heterogeneous catalysis, the probing of band offsets near semiconductor junctions and many other applications. Often large‐area samples are produced by magnetron sputtering from multiple targets or by atomic layer deposition (ALD). Samples can then be transferred to an analytical chamber for checking by X‐ray photoelectron spectroscopy (XPS) or other surface‐sensitive spectroscopies. The ‘wafer‐scale’ nature of these tools is often greater than is required in combinatorial studies, where a few square centimetres or even millimetres of sample is sufficient for each composition to be tested. The large size leads to increased capital cost, problems of registration as samples are transferred between deposition and analysis, and often makes the use of precious metals as sputter targets prohibitively expensive. Instead we have modified a commercial sample block designed to perform angle‐resolved XPS in a commercial XPS instrument. This now allows ion‐beam sputter deposition from up to six different targets under complete computer control. Ion beam deposition is an attractive technology for depositing ultra‐thin layers of great purity under ultra‐high vacuum conditions, but is generally a very expensive technology. Our new sample block allows ion beam sputtering using the ion gun normally used for sputter depth‐profiling of samples, greatly reducing the cost and allowing deposition to be done (and checked by XPS) in situ in a single instrument. Precious metals are deposited cheaply and efficiently by ion‐beam sputtering from thin metal foils. Samples can then be removed, studied and exposed to reactants or surface treatments before being returned to the XPS to examine and quantify the effects. Copyright © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.  相似文献   

5.
Collection of the single crystal X‐ray refraction data of the Bisphenol‐A‐type Macrocyclic oligocarbonate trimer (c‐3mer) at room temperature was carried out. The single crystal of the cyclic trimer that is recrystallized from ethyl acetate showed solvent molecule in the center of macro ring. Similarly, cyclic tetramer (c‐4mer) contained two p‐xylene molecules. Smaller dimer (c‐2mer) did not afford co‐crystal with solvent. Conformation of the carbonate in c‐3mer was s‐cis and s‐cis as in c‐4mer. A relationship between the conformation of carbonate and noncatalyst polymerization activity was not found. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Angle‐resolved x‐ray photoelectron spectroscopy (ARXPS) measurements were made, in repeated sequences employing Al and Mg x‐ray sources alternately, on a polystyrene sample that had been exposed to an oxygen plasma. It was observed that oxygen was lost from the sample over a period of 5 h and 40 min. The ARXPS data sets were corrected for the time displacement between consecutive measurements at different photoemission angles and fitted with three simple models in order to extract oxygen concentration–depth profiles, consistent with the data, as a function of time. The oxygen depth profiles were found to evolve in a consistent manner, indicating both a loss of average oxygen content and thickness in the ‘oxidized polymer layer’. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
8.
X‐ray standing wave (XSW) field generated under Bragg reflection condition in a periodic Mo/Si multilayer structure has been used to determine the concentration and location of various trace element contaminants embedded in different layers of that multilayer structure. We have used intense synchrotron X rays for XSW analysis. It is observed that various trace element impurities such as Cr, Fe, Ni and W get embedded unintentionally in the multilayer structure during the deposition process. Consequences of such impurity incorporation on the optical properties of the multilayer structure are discussed in hard and soft X‐ray regions. Present measurements are important in order to optimize the deposition methods on one hand and to better correlate the measured optical properties of a multilayer structure with theoretical models on the other. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The X‐ray‐induced sample damage during mono XPS analysis of an oxygen‐plasma‐oxidized and subsequently wet‐chemically reduced poly(propylene) film was investigated as a showcase for plasma‐modified or plasma‐deposited samples. By doing this, the degradation index approach as introduced by Beamson and Briggs in the Scienta ESCA300 high‐resolution XPS database of organic polymers has been adopted. As to be expected, the sample degrades by loosing oxygen as revealed by observation of decreasing O/C and C OR/Csum ratios. However, the X‐ray degradation indices are definitely higher than those of conventional reference polymers. Moreover, the C OR/Csum degradation index is significantly higher in comparison with one obtained for the O/C ratio. In that context, there is no difference between the plasma sample and a conventional poly(vinyl alcohol) polymer. It is concluded that for reliable quantitative surface chemical analysis, the quality of spectra in terms of acquisition times must be optimized aimed to a minimization of X‐ray degradation. Finally, it is proposed to describe the photon flux of an X‐ray gun in an XPS experiment, which defines the degradation rate at the end, by using the sample current simply measured with a carefully grounded sputter‐cleaned reference silver sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time‐resolved X‐ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the CoI intermediate of cobaloxime, which is a non‐noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X‐ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive CoI state under similar conditions. Possible deactivation mechanisms are discussed.  相似文献   

11.
Angle‐resolved XPS data (elemental quantification and high‐energy‐resolution C 1s) are presented for ten polymers with side‐chains of the form ? OCO(CF2)yF, ? COO(CH2)2OCO(CF2)yF (y = 1, 2, 3) and ? COO(CH2)x(CF2)yF (x = 1, y = 1, 2, 3; x = 2, y = 8). Particular attention was paid to charge compensation and speed of data acquisition, with co‐addition from multiple fresh samples to give spectra with good energy resolution and good signal‐to‐noise ratio free from the effects of x‐ray‐induced degradation. Water contact angles for the polymers are also reported. The XPS data demonstrate preferential surface segregation of fluorine‐containing groups for all but the shortest side‐chain polymer, where the ? OCOCF3 side‐chain either does not surface segregate or is too short for surface segregation to be detectable by angle‐resolved XPS. In the other polymers studied the relative positions of functional groups in the side‐chains correlate with the angle‐resolved behaviour of the corresponding C 1s components. This shows that the surface side‐chains are oriented towards the polymer surface. For the ? COO(CH2)2OCO(CF2)yF (y = 1) side‐chain, the angle‐resolved C 1s data suggest reduced ordering and linearity compared with y = 2 and 3. For any particular series of polymers, e.g. ? COO(CH2)x(CF2)yF, the water contact angles increase with y, consistent with burying of the hydrophilic ester groups as y increases. For any particular value of y the sequence of water contact angles is ? COO(CH2)x(CF2)yF > ? OCO(CF2)yF ~ ? COO(CH2)2OCO(CF2)yF, suggesting greater ordering and density of fluorocarbon species at the surface of the ? COO(CH2)x(CF2)yF side‐chain polymers compared with the other polymers studied. For the ? COO(CH2)2(CF2)8F polymer a water contact angle of 124° is measured, which is greater than that of poly(tetrafluoroethene). The ? COO(CH2)2OCO(CF2)F polymer is unusual in that it shows a particularly low water contact angle (83° ), suggesting that the probe fluid is able to sense both ester groups, consistent with the reduced ordering of the side‐chain detected by angle‐resolved XPS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
We present a methodology for analyzing the dependence of molecular spectra calculated with quantum‐chemical methods on the underlying molecular structure. This analysis is applied to investigate the structural sensitivity of calculated valence‐to‐core X‐ray emission (VtC‐XES) spectra for the test case of three iron carbonyl complexes, Fe(CO)5, [FeCp(CO)2(THF)]+ (Cp = cyclopentadienyl, THF = tetrahydrofuran), and Fe(CO)3(cod) (cod = cyclooctadienyl). Based on this analysis, we discuss how the VtC‐XES spectra depend on changes of metal–ligand bond distances and bond angles as well as on the structure of the ligands. The benefits of such an analysis of the structural sensitivity are discussed. Our methodology can serve as a first step toward quantifying and accounting for uncertainties due to the underlying model structure in theoretical spectroscopy.  相似文献   

14.
The recent development of X‐ray Photoelectron Spectroscopy (XPS) instrumentation with spatial resolution down to several microns has advanced the capability of elemental and chemical state imaging. XPS imaging analysis has been applied in understanding the delamination problems of siloxane coatings on polymethyl‐methacrylate (PMMA) polymer. It was found that delamination occurred by interfacial failure, and the coating suffered complete delamination from a PMMA substrate. This example offered an opportunity for the investigation of X‐ray damage on polymers encountered in XPS imaging analysis. This paper also demonstrated how to construct a constrained peak model with the aid of chemical knowledge and supporting evidence of the sample. Monte Carlo error analysis was used to determine the validity of the peak fit models used. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Fiber‐structure‐development in the poly(ethylene terephthalate) fiber drawing process was investigated with online measurements of wide‐angle and small‐angle X‐ray scattering with both a high‐luminance X‐ray source and a CO2‐laser‐heated drawing system. The intensity profile of the transmitted X‐ray confirmed the location of the neck‐drawing point. The diffraction images had a time resolution of several milliseconds, and this still left much room for improvement. Crystal diffraction appeared in the wide‐angle X‐ray images almost instantaneously about 20 ms after necking, whereas a four‐point small‐angle X‐ray scattering pattern appeared immediately after necking. With the elapse of time after necking, the four‐point scattering pattern changed into a meridional two‐point shape. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1090–1099, 2005  相似文献   

16.
Red lead, a semiconductor pigment used by artists since antiquity, is known to undergo several discoloration phenomena. These transformations are either described as darkening of the pigment caused by the formation of either plattnerite (β‐PbO2) or galena (PbS) or as whitening by which red lead is converted into anglesite (PbSO4) or (hydro)cerussite (2 PbCO3?Pb(OH)2; PbCO3). X‐ray powder diffraction tomography, a powerful analytical method that allows visualization of the internal distribution of different crystalline compounds in complex samples, was used to investigate a microscopic paint sample from a Van Gogh painting. A very rare lead mineral, plumbonacrite (3 PbCO3? Pb(OH)2?PbO), was revealed to be present. This is the first reported occurrence of this compound in a painting dating from before the mid 20th century. It constitutes the missing link between on the one hand the photoinduced reduction of red lead and on the other hand (hydro)cerussite, and thus sheds new light on the whitening of red lead.  相似文献   

17.
Behaviors of Pd structures with different thicknesses supported by Ta2O5/Ta in the reaction with oxygen and CO were studied by XPS and SEM. For the samples with a Pd thickness of 3 nm, a new low‐binding‐energy component appeared in the Pd 3d level upon O2 exposure at ~200 °C and was reduced in intensity after a subsequent CO exposure at 150 and 200 °C. The change in the Ta 4f state could also be found upon oxygen and CO exposure, indicating that both Pd and the Ta‐oxide substrate participate in the chemical reactions. For the sample with a higher Pd thickness, a positive shift in the Pd 3d level due to the oxidation of Pd was observed after exposure to O2 at a higher temperature (280 °C). A subsequent CO exposure at ~150 °C could not reduce Pd‐oxide layers, as confirmed by the unchanged Pd 3d spectra after CO treatment, i.e. Pd‐oxide was not reactive for CO oxidation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
This International Standard specifies several methods for measuring the oxide thickness at the surfaces of (100) and (111) silicon wafers as an equivalent thickness of silicon dioxide when measured using X‐ray photoelectron spectroscopy. It is only applicable to flat, polished samples and for instruments that incorporate an Al or Mg X‐ray source, a sample stage that permits defined photoelectron emission angles and a spectrometer with an input lens that may be restricted to less than a 6° cone semiangle. For thermal oxides in the range 1‐ to 8‐nm thickness, using the best method described in this International Standard, uncertainties at a 95% confidence level around 2% may be typical and around 1% at optimum. A simpler method is also given with slightly poorer, but often adequate, uncertainties. Copyright © 2012 Crown copyright.  相似文献   

20.
X‐ray photoelectron spectroscopy (XPS) is a powerful surface characterization technique often relied on for quantification of surface species and coverages. Investigation of silicon microrods, considered a model for high‐aspect‐ratio structures, at different angles with respect to substrate normal was determined to have a significant impact on the relative sensitivity of surface‐bound species on rods relative to the base substrate. Comparison between planar silicon and microrod arrays demonstrates that the angular dependence is complicated and that careful studies must optimize conditions to differentiate between surfaces. In addition, the use of reverse angle resolved XPS, where the substrate is turned away from the X‐ray source, is shown to assist in simplifying the spectrum by removing underlying signal from the substrate near the base. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号