首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantum anharmonic oscillator in the ground state has been considered under the conditions of loading with an external force. The wave functions have been calculated for different forces, and the eigenvalues of the energy of the system have been determined as a function of the load. It has been established that the zero-point energy of the oscillator varies linearly with a variation in the force (decreases under tension and increases under compression) and that the average kinetic and potential components of the energy are also characterized by linear variations.  相似文献   

2.
An excited anharmonic oscillator is considered under conditions of adiabatic (i.e., slow, as compared to the oscillation period) loading with an external force tending to a constant value at long times. The energy characteristics of the adiabatically loaded anharmonic oscillator, such as the instantaneous energy of the oscillator, the maximum kinetic (oscillation) energy, and the kinetic and potential energies averaged over the period, are analytically calculated as a function of the steady-state force. The analytical results are confirmed by the data of numerical calculations. It is established that the external force gives rise to a redistribution of the average kinetic and potential components of the initial energy of the anharmonic oscillator and that the transferred energy portions at a small external force considerably exceed the average work done by the external force.  相似文献   

3.
A decrease in the frequency of skeletal vibrations (frequency-elastic effect) has been measured using Raman spectroscopy, and the stretching of backbone interatomic bonds in polyethylene molecules under elastic tensile loading of oriented polyethylene fibers has been measured using X-ray diffraction. It has been found that there are differences in the sign and magnitude of the changes in the zero-point energy and the work of the external force. The energy of the frequency-elastic effect has been explained in terms of the influence exerted by the initial (before loading) anharmonic stretching of backbone bonds and the force of anharmonic pressure, with the separation of the anharmonic (potential) component of the zero-point energy of the solid. A change in the frequency of vibrations corresponds to a change in the harmonic component of the zero-point energy. The loading with an external force causes a redistribution of the zero-point energy components. An energy analysis of the loaded quantum anharmonic oscillator has confirmed the conclusion regarding the mechanism of energy transfer and revealed that, under loading, there is a redistribution of the average values of the kinetic and potential components of the internal energy of the oscillator.  相似文献   

4.
The model of a solid in the form of an ensemble of independent anharmonic oscillators arranged in a uniform stress field has been considered to analyze the energy balance during adiabatic mechanical loading of a solid at low temperatures. Oscillator elongation is determined as the average over the ensemble, and a part of its energy is matched to this quantity. This part has the physical meaning of the mechanical energy of sample deformation and becomes a part of the energy balance upon deformation. After averaging, the uniform force field is replaced by the resultant force associated with the average deformation. Another component of the balance at low temperatures is the energy of zero-point vibrations of oscillators. Thus, upon mechanical deformation of a solid, the energy exchange occurs between two scale levels: the atomic vibration energy at a microlevel and the macroscopic deformation energy of the sample as a whole.  相似文献   

5.
This paper reports on the results of measurements of changes in the temperature of a solid under the adiabatic elastic loading (thermoelastic effect), the coefficient of thermal expansion, and the Young’s modulus of a rigid-chain vitrified polymer, namely, polyimide. It has been found that there are differences in the sign and magnitude of the changes in the energy of thermal origin in samples and the work of the external force. The energy of the thermoelastic effect has been explained in terms of the influence exerted by the anharmonic expansion of a solid, with the separation of the quasi-static potential and dynamic components of the thermal energy of the solid. The loading with an external force causes a redistribution of the thermal energy. A change in the temperature of the solid corresponds to a change in the dynamic component. An energy analysis of the adiabatically loaded anharmonic oscillator has confirmed the conclusion regarding the mechanism of energy transfer and revealed that, under loading, there is a redistribution of the kinetic and potential components of the internal energy of the oscillator.  相似文献   

6.
The dependence of the temperature on the external adiabatic deformation is determined for a one-dimensional model of a solid — chains of atoms with an anharmonic interaction. The resulting dependences of the average kinetic and potential components of the internal energy on this deformation are compared with a model of adiabatic loading of a single oscillator. Fiz. Tverd. Tela (St. Petersburg) 40, 1548–1551 (August 1998)  相似文献   

7.
R K Agrawal  V S Varma 《Pramana》1991,36(5):489-496
The existence of finite discontinuities in the energy eigenvalue spectra of certain multiterm potentials when their coupling parameters attain suitably chosen limiting values has been reported in the literature. We show that such discontinuities are also characteristic of such well-known systems as generalized anharmonic oscillators and the doubly anharmonic oscillator in one dimension. The present study strengthens the general conjecture that eigenvalue spectra are likely to display discontinuities in situations where a potential undergoes an abrupt change in shape with smooth variation of its coupling parameters.  相似文献   

8.
A model of d-dimensional quantum anharmonic oscillators living on v , with a polynomial anharmonicity and a ferroelectric pair interaction is considered. For all v, d , including the cases where such models undergo a structural phase transition, it is proved that the fluctuations of displacements of particles remain normal at all temperatures if the energy of zero-point oscillations of a given particle exceeds a certain value proportional to the energy of its interaction with the rest of oscillators. In particular, this occurs when the smallest distance between the energy levels of the corresponding one-dimensional isolated oscillator is large enough or its reduced mass is small enough. Therefore, in such systems strong zero-point oscillations may suppress abnormal fluctuations of any kind at all temperatures.  相似文献   

9.
We consider a chain of N harmonic oscillators perturbed by a conservative stochastic dynamics and coupled at the boundaries to two gaussian thermostats at different temperatures. The stochastic perturbation is given by a diffusion process that exchange momentum between nearest neighbor oscillators conserving the total kinetic energy. The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. We prove that the stationary state, in the limit as N→ ∞, satisfies Fourier’s law and the linear profile for the energy average  相似文献   

10.
In the present study we investigate the statistical thermodynamics of the anharmonic oscillator, whose energies are characterized by the potential 1/2x 2+x 4. Employing the energies recently obtained by Hioe and Montroll, we compute the partition function and the thermodynamic quantities for the anharmonic and quartic oscillators. Low- and high-temperature formulas are presented for the thermodynamic quantities of the oscillators.  相似文献   

11.
It has been shown that, in a classical ensemble of anharmonic oscillators, the mean value of the oscillator coordinate is a classical parameter in the sense that the statistical sum of the ensemble satisfies, to the second order in the anharmonicity constant, the stationary condition with respect to this parameter. This stationary condition is equivalent to the classical condition for the balance of external and internal forces acting on the oscillator. This equivalence is justified by the fact that the statistical sum, which is stationary with respect to the mean oscillator coordinate, agrees within this accuracy with the usual statistical sum of independent anharmonic oscillators. After introducing the classical parameter into a large thermodynamic system, the energy balance under the mechanical deformation of the system is realized through the exchange between two scale levels: the energy of oscillations at the microlevel and the macroscopic potential energy of deformation of the sample as a whole.  相似文献   

12.
In this paper the impact of a line of adjacent structures, or oscillators, is studied using an energy formulation. The energy exchange and dissipation from a collision of a pair of oscillators is studied by creating an equivalent oscillator pair, one has the energy of the in-phase motion and the other has the out-of-phase energy. It is found that the energy exchange between colliding oscillators is proportional to the initial kinetic energy difference of the oscillators and that work in the collision is proportional to the out-of-phase energy or difference energy. The kinetic energy at contact is then related to the mean oscillator energy, permitting a power balance equation to be written for each oscillator in line. The power balance equations have three independent variables for each pair of oscillators: the oscillator time averaged energies and the phase difference. This equation is run in a time-stepping procedure, with steps at the mean collision rate. The work in the collisions and internal oscillator dissipation is output as a function of time. A parameter study is conducted to see how the work changes with oscillator: separation, contact stiffness and contact damping.  相似文献   

13.
《Infrared physics》1989,29(2-4):485-501
The quantum dynamics of molecular vibrations under the influence of coherent infrared-laser multiphoton excitation is irregular, in most cases, on the time scale of experimental interest. This irregularity arises from the anharmonic nature of the molecular force fields and is already present in one dimensional anharmonic oscillators. We analyse the onset of the irregularity in the model of a Morse oscillator and discuss the role of statistical or “chaotic” behaviour of the time dependent probability density. We further discuss the role of direct multiphoton excitation in these multilevel systems and compare the results with exact solutions for the harmonic oscillator.  相似文献   

14.
势阱中粒子能级与波函数微扰计算的代数递推公式   总被引:2,自引:0,他引:2  
利用超位力定理(HVT)和Hellmann-Feynman定理(HFT),导出了由有精确解的势阱的能级值用微扰法直接计算一维势阱的各级近似能级的普遍代数公式,并导出由能级近似值计算定态波函数近似表达式的代数公式,给出了代数公式具体应用的几个典型一维势阱实例,此法可推广到二维势阱与三维势阱的情形。  相似文献   

15.
In terms of excitation creation and annihilation operators of the Jaynes-Cummings model, acting in the representation of dressed states, the Hamiltonian is written which describes the character of the spectrum of excitations of two modes, representing a quantum analog of the classical behavior of two interacting one-dimensional anharmonic oscillators, namely, the field and atomic oscillators. The anharmonicity is caused by the nonlinearity of the oscillator interaction and manifests itself in the dependence of the frequencies of both modes on the number of excitations, i.e., on the energy. It is shown that an external deterministic force, acting on the system during a certain time t 0, transfers it from a vacuum state to a coherent state or from one of the coherent states to another coherent state. The probability of the transition from the vacuum state to the coherent state with a given number of excitations represents the Poissonian distribution for the number of excitations formed in the (atom + field) system by the end of action of the external force. It was found to be proportional to the excitation time t 0.  相似文献   

16.
A new class of nonlinear stochastic models is introduced with a view to explore self-organization. The model consists of an assembly of anharmonic oscillators, interacting via a mean field of system size range, in presence of white, Gaussian noise. Its properties are explored in the overdamped regime (Smoluchowski limit). The single oscillator potential is such that for small oscillator displacements it leads to a highly nonlinear force but becomes asymptotically harmonic. The shape of the potential can be a single-or double-well and is controlled by a set of parameters. Through equilibrium statistical mechanical analysis, we study the collective behavior and the nature of phase transition. Much of the analysis is analytic and exact. The treatment is not restricted to the thermodynamic limit so that we are also able to discuss finite size effects in the model.  相似文献   

17.
The partition function of an oscillator disturbed by a set of electron particle paths has been computed by a path integral formalism which permits to evaluate at any temperature the relevant cumulant terms in the series expansion. The low temperature cutoffs in the anharmonic cumulant series are determined fulfilling the constraint of the third law of thermodynamics. The general method here proposed has been applied to the semiclassical Su-Schrieffer-Heeger model whose time dependent source current is linear in the oscillator displacement field. We find that this peculiar current induces large electron-phonon anharmonicities on the phonon subsystem. As a signature of anharmonicity the phonon heat capacity shows a peak whose temperature location strongly varies with the strength of the e-ph coupling. Since the electron hopping potential provides a sizeable background in the low and intermediate temperature range, such a peak is partly smeared in the total heat capacity. Low energy oscillators are more sensitive to anharmonic perturbations.Received: 7 January 2004, Published online: 3 August 2004PACS: 71.20.Rv Polymers and organic compounds - 31.15.Kb Path-integral methods - 63.20.Kr Phonon-electron and phonon-phonon interactions  相似文献   

18.
Functional renormalization group methods formulated in the real-time formalism are applied to the O(N) symmetric quantum anharmonic oscillator, considered as a 0 + 1 dimensional quantum field-theoric model, in the next-to-leading order of the gradient expansion of the one- and two-particle irreducible effective action. The infrared scaling laws and the sensitivity-matrix analysis show the existence of only a single, symmetric phase. The Taylor expansion for the local potential converges fast while it is found not to work for the field-dependent wavefunction renormalization, in particular for the double-well bare potential. Results for the gap energy for the bare anharmonic oscillator potential hint on improving scheme-independence in the next-to-leading order of the gradient expansion, although the truncated perturbation expansion in the bare quartic coupling provides strongly scheme-dependent results for the infrared limits of the running couplings.  相似文献   

19.
Over the past few years, nonlinear oscillators have been given growing attention due to their ability to enhance the performance of energy harvesting devices by increasing the frequency bandwidth. Duffing oscillators are a type of nonlinear oscillator characterized by a symmetric hardening or softening cubic restoring force. In order to realize the cubic nonlinearity in a cantilever at reasonable excitation levels, often an external magnetic field or mechanical load is imposed, since the inherent geometric nonlinearity would otherwise require impractically high excitation levels to be pronounced. As an alternative to magnetoelastic structures and other complex forms of symmetric Duffing oscillators, an M-shaped nonlinear bent beam with clamped end conditions is presented and investigated for bandwidth enhancement under base excitation. The proposed M-shaped oscillator made of spring steel is very easy to fabricate as it does not require extra discrete components to assemble, and furthermore, its asymmetric nonlinear behavior can be pronounced yielding broadband behavior under low excitation levels. For a prototype configuration, linear and nonlinear system parameters extracted from experiments are used to develop a lumped-parameter mathematical model. Quadratic damping is included in the model to account for nonlinear dissipative effects. A multi-term harmonic balance solution is obtained to study the effects of higher harmonics and a constant term. A single-term closed-form frequency response equation is also extracted and compared with the multi-term harmonic balance solution. It is observed that the single-term solution overestimates the frequency of upper saddle-node bifurcation point and underestimates the response magnitude in the large response branch. Multi-term solutions can be as accurate as time-domain solutions, with the advantage of significantly reduced computation time. Overall, substantial bandwidth enhancement with increasing base excitation is validated experimentally, analytically, and numerically. As compared to the 3 dB bandwidth of the corresponding linear system with the same linear damping ratio, the M-shaped oscillator offers 3200, 5600, and 8900 percent bandwidth enhancement at the root-mean-square base excitation levels of 0.03g, 0.05g, and 0.07g, respectively. The M-shaped configuration can easily be exploited in piezoelectric and electromagnetic energy harvesting as well as their hybrid combinations due to the existence of both large strain and kinetic energy regions. A demonstrative case study is given for electromagnetic energy harvesting, revealing the importance of higher harmonics and the need for multi-term harmonic balance analysis for predicting the electrical power output accurately.  相似文献   

20.
We investigate the fundamental connection between quadrature squeezing and continuous variable entanglement within a general class of two-coupled oscillator systems. We determine the quantitative relationship between them through the squeezing parameter and the entanglement entropy of the lowest energy eigenstate of the coupled oscillator systems numerically. Unlike the relation between entanglement and uncertainty product, we found that this relationship is, by no means, the same for the whole class of coupled oscillator systems: to a large extent it depends on the order and strength of the anharmonic potential, which implies that knowledge of the anharmonic potential of the coupled oscillator system is required before one can characterize the degree of entanglement through the squeezing parameter. Our results reveal that a more effective approach to enhance squeezing is to adjust the anharmonicity of the system potential, instead of increasing the quantum correlations between the oscillators. In addition, by probing into a quantum catastrophe model, we uncover transitions in the entanglement entropy and squeezing relation as the potential changes from a single well to a triple well, and then a double-well structure. The transitions appear through distinct entropy–squeezing relation, with a multi-well structure displaying a larger change in the antisqueezing behavior of the position quadrature than the single-well structure, for the same change in the entanglement entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号