首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites of polystyrene (PS) with cellulose microfibres and oat particles, obtained by melt mixing, were examined. The compatibilization of the composites was carried out by addition of maleic anhydride-functionalized copolymers (SEBS-g-MA, PS-co-MA) and poly(ethylene glycol) to improve the fibre–matrix interfacial interactions. The plain components and their composites were characterised by FT-IR, DSC, TGA, SEM microscopy and mechanical tests. The properties of the various systems were analysed as a function of both fibre and compatibilizer amount. The compatibilized PS composites showed enhanced fibre dispersion and interfacial adhesion as a consequence of chemical interactions between the anhydride groups on the polymer chains and the hydroxyl groups on the fibres, as demonstrated by FT-IR spectroscopy. DSC analysis pointed out a neat increase of T g of composites on addition of SEBS-g-MA, as compared to PS-co-MA. The thermal stability of composites was also influenced by the type and amount of fibres, as well as by the structure and concentration of compatibilizer. The effect of the reactive copolymers on the composites properties was accounted for on the basis of the polymer–polymer miscibility and chemical interactions at the matrix/filler interface.  相似文献   

2.
The present work revealed there was a conceptual difference in the thermal decomposition behaviors between the complexed β-cyclodextrin (CD) in an inclusion system and the β-CD complex of guest. The thermal decomposition behaviors of the solid inclusion complexes of β-CD with ethylenediamine (Eda), diethylenetriamine (Dta) and triethylamine (Tea) were investigated using nonisothermal thermogravimetry (TG) analysis based on weight loss as a function of temperature. In view of TG profiles, a consecutive mechanism describing the formation and thermal decomposition of the three solid supermolecules of β-CD was presented. Heating rate has very different effects on the thermal decomposition behaviors of these complexes. The faster the heating rate is, the higher the melting-decomposition point of the complexed β-CD in an inclusion system is, and on the whole the bigger the rate constant (k) of the thermal decomposition reaction of the complexed β-CD is. The thermal decomposition process of the complexed β-CD for each inclusion system is determined to be simple first-order reaction using Ozawa method. The apparent activation energies (E a) and frequency factors (A) of the thermal decomposition reactions of the complexed β-CD molecules have been also calculated. It is found that when the decomposition reaction of the complexed β-CD encountered a large value of E a, such as that in Dta–β-CD system, an apparent compensation effect of A on E a can provide enough energy to conquer the reaction barrier in prompting the k value of thermal decomposition reaction of the complexed β-CD according to Arrhenius equation.  相似文献   

3.
TiO2–CeO2 oxides for application as ceramic pigments were synthesized by the Pechini method. In the present work the polymeric network of the pigment precursor was studied using thermal analysis. Results obtained using TG and DTA showed the occurrence of three main mass loss stages and profiles associated to the decomposition of the organic matter and crystallization. The kinetics of the degradation was evaluated by means of TG applying different heating rates. The activation energies (E a) and reaction order (n) for each stage were determined using Horowitz–Metzger, Coats–Redfern, Kissinger and Broido methods. Values of E a varying between 257–267 kJ mol–1 and n=0–1 were found. According to the kinetic analysis the decomposition reactions were diffusion controlled.  相似文献   

4.
Thermal decomposition processes of selected chemicals used as food preservatives such as sodium formate, sodium propionate, sodium nitrates(V and III) and sodium sulphate(IV) were examined by the derivatographic method. Based on the curves obtained, the number of decomposition stages and characteristic temperatures of these compounds have been found. Mass decrements calculated from TG curves ranged from 28.9% for sodium formate to 77.8% for sodium nitrate(V), while sodium sulphate showed a mass increment of 5.6%. Kinetic parameters such as activation energy (E a ), frequency factor (A ) and reaction order (n ) were calculated from TG, DTG and T curves. Sodium formate shows the highest values of E a and A which amount to 171.7 kJ mol–1 and 5.8⋅1014 s–1 , respectively, while the lowest ones, E a =28.2 kJ mol–1 and A =3.65⋅102 s–1 belong to sodium nitrate(V). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
This study examined the interfacial adhesion, mechanical, and thermal properties of compatibilizing agent-treated and non-treated biocomposites as a function of the type of compatibilizing agent. The tensile strength, interfacial adhesion, and heat deflection temperature (HDT) of maleic anhydride-grafted poly(butylene succinate) (PBS-MA) and maleic anhydride-grafted poly(lactic acid) (PLA-MA)-treated biocomposites are greater than those of untreated maleic anhydride-grafted poly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer (SEBS-MA) and maleic anhydride-grafted polypropylene (MAPP)-treated biocomposites. The storage modulus (E′) values and the tan δmax temperatures (T g) of PBS-MA and PLA-MA-treated biocomposites were slightly higher than that of the untreated biocomposites.  相似文献   

6.
In this work, a kinetic study on the thermal degradation of carbon fibre reinforced epoxy is presented. The degradation is investigated by means of dynamic thermogravimetric analysis (TG) in air and inert atmosphere at heating rates from 0.5 to 20°C min−1 . Curves obtained by TG in air are quite different from those obtained in nitrogen. A three-step loss is observed during dynamic TG in air while mass loss proceeded as a two step process in nitrogen at fast heating rate. To elucidate this difference, a kinetic analysis is carried on. A kinetic model described by the Kissinger method or by the Ozawa method gives the kinetic parameters of the composite decomposition. Apparent activation energy calculated by Kissinger method in oxidative atmosphere for each step is between 40–50 kJ mol−1 upper than E a calculated in inert atmosphere. The thermo-oxidative degradation illustrated by Ozawa method shows a stable apparent activation energy (E a ≈130 kJ mol−1 ) even though the thermal degradation in nitrogen flow presents a maximum E a for 15% mass loss (E a ≈60 kJ mol−1 ). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The curing of a phenol–formaldehyde–tannin (PFT) adhesive in the presence of pine or eucalyptus wood has been studied using differential scanning calorimetry. The influence of the adhesive/wood ratio on the activation energy (Ea), the temperature of the maximum of the exothermic peak (Tp) and the enthalpy of the curing process (ΔH) was analysed. Ea, Tp and ΔH of the curing reaction decreased when wood was added in the curing system. The adhesive/wood interaction did not depend significantly on wood species.  相似文献   

8.
We report on the accelerated ageing of cellulose based insulating paper by means of pulsed UV laser irradiation (λ = 248 nm) under various experimental conditions including paper composition, background gas (He, N2 and air) and moisture content of the paper. The temperature reached by the paper samples during their laser irradiation was monitored by means of real-time IR imaging. It is shown that the equilibrium temperature (T eq) reached by the paper increases from ~30 to ~270 °C when the laser energy density was raised from 15 to 550 mJ cm−2. The laser irradiated samples were systematically characterized by means of scanning electron microscopy (SEM) observations and degree of polymerization (DPv) measurements. Interestingly, it is found that, for a given moisture content, the degradation level of the cellulose is mainly triggered by the T eq value reached during the laser irradiation. Moreover, their moisture content was found to influence significantly the number of laser produced bond scissions (it doubles when the moisture content is increased from 0.5 to 6%); the paper degradation is apparently not affected by the presence of oxygen as the background gas. These results suggest that the laser induced cellulose degradation occurs through a direct photolysis (i.e. direct breakage of C–C, C–O and C–H bonds), leading to radicals formation, which, in turn, are believed to induce the acid hydrolysis degradation mechanism, the latter being moisture dependent. The activation energy (E a) of each gaseous species collected after the laser degradation was estimated. Their E a values were found to be in good agreement with the one associated to the laser depolymerisation of cellulose (i.e. ~56 kJ mol−1), suggesting thereby a direct correlation between the cellulose degradation and the formation of the detected gaseous species. Finally, the pulsed laser irradiation can be seen as an attractive tool to identify primarily generated molecules, on a very short time scale, that can be used as relevant chemical markers for the monitoring of the ageing of transformers materials with cellulose.  相似文献   

9.
New densities are reported over the whole composition range for 1-iodoperfluorohexane+n-octane system at temperatures from 288.15 to 308.15 K at atmospheric pressure. These data have been used to compute the excess molar volumes, V m E. Large positive V m E values have been obtained over the entire range of composition, which increases when the temperature rises. The experimental data were used to calculate the isobaric thermal expansivity, and the quantities (∂V m E/∂T)p and (∂H m E/∂p)T. Furthermore, the results have been used to investigate the volumetric prediction ability of the equations of state Soave–Redlich–Kwong, Peng–Robinson, Patel–Teja and Soave–Redlich–Kwong with volume translation.  相似文献   

10.
Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 °C/min, the E α and B α terms could be determined and consequently the pre-exponential factor A α as well as the kinetic model g(α). The pyrolysis of celluloses followed kinetic model g(a) = [ - ln(1 - a)]1 \mathord
/ \vphantom 1 1.63 1.63 g(\alpha ) = [ - \ln (1 - \alpha )]^{{{1 \mathord{\left/ {\vphantom {1 {1.63}}} \right. \kern-\nulldelimiterspace} {1.63}}}} on average, characteristic for Avrami–Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.  相似文献   

11.
Polymer composite materials were prepared from poly(ethylene terephthalate)–poly(trimethylene terephthalate) blends as the matrix and different microcrystalline cellulose (MCC) filler levels (0–40 wt%) using melt compounding followed by compression molding. The composites were analyzed using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The DSC results indicated that there is no consistent or significant influence of the MCC addition on the glass transition (T g), melting (T m), and crystallization temperature of the composites. With increasing MCC content, dynamic mechanical properties improved because of the reinforcing effect of the MCC. The tan δ peak values from the DMTA were not significantly changed as the MCC content increased. TG indicated that the onset temperature of rapid thermal degradation decreased with increasing MCC content. It was also found that the thermal stability of the composites slightly decreased as the MCC content increased.  相似文献   

12.
A new inorganically template metaphosphate of Co(II) complex has been synthesized and characterized by different measurements such as DSC, FT-IR, C–H–N–O–S, ESR, TG-DTA and X-RD. Differential Scanning Calorimeter (DSC) elucidated negative specific heat of the system and has used to evaluate some thermo dynamical constants like activation energy (E a), frequency factor (A), enthalpy and entropy of that system. The specific heat capacity of the system is measured both in atmospheric O2 and N2 atmosphere at different heating rates of 278, 283, 293 and 298 K min−1 in room atmosphere and 288 K min−1 in N2 atmosphere.  相似文献   

13.
In this paper, evaluation of kinetic parameters (the activation energy – E,the pre-exponential factor – A and the reaction order – n) with simultaneous determination of the possible reaction mechanism of thermal decomposition of calcium hydroxide (portlandite), Ca(OH)2 formed during hydration of commercial Portland-slag cement, by means of differential scanning calorimetry (DSC) in non-isothermal conditions with a single heating–rate plot has been studied and discussed. The kinetic parameters and a mechanism function were calculated by fitting the experimental data to the integral, differential and rate equation methods. To determine the most probable mechanism, 30 forms of the solid-state mechanism functions, fc) have been tried. Having used the procedure developed and the appropriate program support, it has been established that the non-isothermal thermal decomposition of calcium hydroxide in the acceleratory period (0.004<αc<0.554) can be described by the rate equation: d αc/dT=A/βexp(−E/RT)fc), which is based on the concept of the mechanism reaction:fc)=2(αc)1/2. The mechanism functions as well as the values of the kinetic parameters are in good agreement with those given in literature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Thermal degradation kinetics of MWNT-reinforced EMA-based nanocomposites having different methyl acrylate (MA) contents (by % mass) ranging from 9 to 30% have been monitored. Kissinger and Flynn?CWall?COzawa methods for evaluating non-isothermal degradation of polymers have been examined. Overall, the thermal stabilities of the nanocomposites are the function of amount of MWNTs loading and their state of dispersion that depends on the MA content of respective EMAs. Composite samples exhibit higher activation energy (E a) than the neat EMAs but the E as of the composites diminish with increased MA contents of the matrices. TG-Mass spectrometry has been used to identify the volatile products resulting from thermal degradation of composites, and a promising mechanism has been proposed over different range of temperatures of degradation. It is proposed that the side-group scission of methoxycarbonyl group initiates thermal decomposition following combination of chain end and random chain scission reactions, ensuing pseudo second-order kinetics.  相似文献   

15.
The main purpose of this paper is to prove the applicability of the mechanism of congruent dissociative vaporization (CDV) to the solid-state decomposition kinetics through the comparison of the fundamental theoretical relationship Ei/Ee=(a+b)/a resulted from this mechanism with experiment. It has been shown that the ratios of Ei and Ee parameters of the Arrhenius equation measured in the isobaric and equimolar modes (in the presence and absence of H2O vapour) for 22 reactants with the general formula aSalt⋅bH2O or aOxide⋅bH2O are in agreement with the values of (a+b)/a. The relative standard deviation is only 17% and the correlation coefficient is close to 0.99. A probability of accidental correlation for all set of the E parameters taken from the literature is lower than 4⋅10–16 . This strongly supports the validity of the CDV mechanism. The problem of stability of polyatomic molecules of inorganic salts in the gaseous state, which are the primary decomposition products of crystalline hydrates, was also discussed on the basis of recent mass spectroscopy studies. It was concluded that any doubts in the applicability of the CDV mechanism as a general mechanism of solid-state decomposition reactions are unsound.  相似文献   

16.
Cellulose–phosphate composite membranes have been prepared from bacterial cellulose membranes (BC) and sodium polyphosphate solution. The structure and thermal behavior of the new composites were evaluated by X-ray diffraction (XRD), 31P-nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and thermomechanical analysis (TMA). From XRD analyses the Iα and Iβ cellulose crystalline phases were identified together with crystalline sodium phosphate that covers the cellulose microfibrils as revealed by SEM. 31P NMR spectra show peaks assigned to Q0 and Q1 phosphate structures to be compared to the Q2 units that characterize the precursor polyphosphate. Glass transition temperature, T g, obtained from TMA curves and thermal stability obtained from TG and DSC measurements, were observed to be dependent on the phosphate content.  相似文献   

17.
Simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) techniques were used for the characterization the thermal degradation of loratadine, ethyl-4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidine)-1-piperidinecarboxylate. TG analysis revealed that the thermal decomposition occurs in one step in the 200–400°C range in nitrogen atmosphere. DTA and DSC curves showed that loratadine melts before the decomposition and the decomposition products are volatile in nitrogen. In air the decomposition follows very similar profile up to 300°C, but two exothermic events are observed in the 170–680°C temperature range. Flynn–Wall–Ozawa method was used for the solid-state kinetic analysis of loratadine thermal decomposition. The calculated activation energy (E a) was 91±1 kJ mol–1 for α between 0.02 and 0.2, where the mass loss is mainly due to the decomposition than to the evaporation of the decomposition products.  相似文献   

18.
Thermal decomposition kinetics of calix[6]arene (C6) and calix[8]arene (C8) were studied by Thermogravimetry analysis (TG) and Differential thermal analysis (DTA). TG was done under static air atmosphere with dynamic heating rates of 1.0, 2.5, 5.0, and 10.0 K min−1. Model-free methods such as Friedman and Ozawa–Flynn–Wall were used to evaluate the kinetic parameters such as activation energy (E a) and pre-exponential factors (ln A). Model-fitting method such as linear regression was used for the evaluation of optimum kinetic triplets. The kinetic parameters obtained are comparable with both the model-free and model-fitting methods. Within the tested models, the thermal decomposition of C6 and C8 are best described by a three dimensional Jander’s type diffusion. The antioxidant efficiency of C6 and C8 was tested for the decomposition of polypropylene (PP).  相似文献   

19.
Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80–203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=−2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems.  相似文献   

20.
Although cellulose acetates, CAs, are extensively employed there is scant information about the systematic dependence of their properties on their degree of substitution, DS; this is the subject of the present work. Nine CAs samples, DS from 0.83 to 3.0 were synthesized; their films were prepared. The following solvatochromic probes have been employed in order to determine the empirical polarity, E T(33); “acidity, α”; “basicity, β”, and “dipolarity/polarizability, π*” of the casted films: 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl) phenolate, WB; 4-nitroaniline; 4-nitroanisole; 4-nitro-N,N-dimethylaniline; 2,6-diphenyl-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, RB. Additionally, two systems, ethanol plus ethyl acetate (EtOH–EtAc), and cellulose plus cellulose triacetate, CTA, were employed as models for CAs of different DS. Regarding the model systems, the following was observed: (i) For EtOH–EtAc, the dependence of all solvatochromic parameters on the “equivalent-DS” of the binary mixture was non-linear because of preferential solvation; (ii) The dependence of E T(33) on equivalent DS of the cellulose–CTA films is linear, but the slope is smaller than that of the corresponding plot for CAs. This is attributed to the more efficient hydrogen bonding in the model system, a conclusion corroborated by IR measurements. The dependence of solvatochromic parameters of CAs on their DS is described by the simple equations; a consequence of the substitution of the OH by the ester group. The thermal properties of bulk CAs samples were investigated by DSC and TGA; their dependence on DS is described by simple equations. The relevance of these data to the processing and applications of CAs is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号