首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— A cis, syn -pyrimidine dimer (derived from thymine and orotate) covalently linked to 5-methoxyindole has been studied as a mechanistic model of photosensitized pyrimidine dimer splitting. In this dimer-indole, photoinitiated electron transfer to the dimer causes splitting in a manner that parallels the mechanism by which the DNA photolyases are thought to act. Dissolved in EPA (diethyl ether-isopentane-ethyl alcohol, 5: 5: 1, by vol) at room temperature, the dimer-indole exhibited indole fluorescence quenching and underwent splitting upon irradiation at 300 nm. In an EPA glass at 77 K, however, no splitting was detectable. To distinguish the effects of temperature and immobilization, photolysis experiments were performed on PMM [poly(methyl methacrylate)] films containing dimer-indole. In PMM at room temperature, dimer-indole underwent splitting when irradiated at 300 nm, which indicated that immobilization per se was not responsible for the failure of dimer-indole to split at low temperature. Furthermore, no splitting was observed when dimer-indole was irradiated in PMM at 77 K. These results imply that a step following photoinitiated, intramolecular electron transfer from indole to dimer has an insurmountable activation barrier at 77 K. The mechanistic implications for the photolyases are considered.  相似文献   

2.
Abstract— Photosensitized pyrimidine dimer splitting characterizes the enzymatic process of DNA repair by the DNA photolyases. Possible pathways for the enzymatic reaction include photoinduced electron transfer to or from the dimer. To study the mechanistic photochemistry of splitting by a sensitizer representative of excited state electron donors, a compound in which an indole is covalently linked to a pyrimidine dimer has been synthesized. This compound allowed the quantitative measurement of the quantum efficiency of dimer splitting to be made without uncertainties resulting from lack of extensive preassociation of the unlinked dimer and sensitizer free in solution. Irradiation of the compound with light at wavelengths absorbed only by the indolyl group (approximately 280 nm) resulted in splitting of the attached dimer. The quantum yield of splitting of the linked system dissolved in N20-saturated aqueous solution was found to be 0.04 ± 0.01. The fluorescence typical of indoles was almost totally quenched by the attached dimer. A splitting mechanism in which an electron is efficiently transferred intramolecularly from photoexcited indole to ground state dimer has been formulated. The surprisingly low quantum yield of splitting has been attributed to inefficient splitting of the resulting dimer radical anion. Insights gained from this study have important mechanistic implications for the analogous reaction effected by the DNA photolyases.  相似文献   

3.
Photosensitized splitting of cis-syn- and trans-syn-l,3-dimethyluracil dimers by 2′,3′,4′,5′-tetraacetylri-boflavin in acetonitrile containing a trace of perchloric acid was studied by laser flash photolysis. Protonation of the flavin prior to excitation resulted in excited singlet and triplet states that abstracted an electron from the dimers and yielded the protonated flavin radical (F1H2+), which was detected by absorption spectroscopy. Electron abstraction by the excited singlet state predominated over abstraction by the triplet state. Approximately one-third to one-half of the excited states quenched by the trans-syn dimer yielded F1H2+, the balance presumably undergoing back electron transfer within the geminate radical ion pair generated by the initial electron transfer. A covalently linked dimer-flavin exhibited very inefficient flavin radical ion formation, consistent with the known low efficiency of dimer splitting in this system. These results constitute the first identification of a flavin radical ion intermediate in photosensitized pyrimidine dimer splitting.  相似文献   

4.
Abstract— The spectra have been measured of the transient species formed in the nanosecond flash photolysis of aqueous solutions of sulphacetamide under a variety of conditions. In addition to the excited triplet state, the cation radical and the solvated electron were observed. The ionisation of aqueous sulphacetamide was found to occur by a biphotonic process. The extinction coefficient of the cation radical of sulphacetamide was determined by both laser flash photolysis and pulse radiolysis techniques, a value of 1.9 times 103 dm3mol-1cm-1 being obtained. The rate of electron reaction with sulphacetamide and the anion radical spectrum were also determined by the two techniques, good agreement being obtained. The spectrum of the product of the reaction of the superoxide anion radical and the corresponding rate constant have also been determined. A possible mechanism of photosensitized skin reaction due to sulphacetamide is discussed.  相似文献   

5.
LUMIFLAVIN-SENSITIZED PHOTOOXYGENATION OF INDOLE   总被引:1,自引:0,他引:1  
Abstract— The lumiflavin-sensitized photooxygenation of indole in aqueous solutions has been investigated by means of steady light photolysis and flash photolysis. The semiquinone of lumiflavin and the half-oxidized radical of indole were formed by the reaction between triplet lumiflavin and indole (3.7 times 109 M -1 s-1). The semiquinone anion radical of lumiflavin reacted with oxygen to form superoxide radical. The triplet state of lumiflavin also reacted with oxygen forming singlet oxygen, 1O2. But the reaction between 1O2 and indole (7 times 107 M_l s_1; estimated from steady light photolysis using Rose Bengal as a sensitizer) was far less efficient than the reaction between indole and triplet lumiflavin. The quantum yield of the lumiflavin-sensitized photooxygenation of dilute indole via radical processes was much higher than that via 1O2 processes, though appreciable 1O2 was formed.  相似文献   

6.
Abstract— Laser flash photolysis studies of DNA-complexed ethidium bromide were undertaken. We have observed a singlet-singlet (S1-Sn) absorption process for DNA-complexed ethidium bromide. The observed lowest singlet excited state lifetime was 21 ± 2 ns. The molar difference extinction coefficient was measured to be 2.4 ± 0.4 × 103M-1 cm-1 at 370 nm. The assignment of this transition was confirmed by time resolved fluorescence measurements.  相似文献   

7.
Abstract— The excited singlet state of a deprotonated, reduced flavin [1, 5-dihydro- N (3)-carboxymethyllumiflavin] in aqueous solution at pH 8 has been detected by laser flash photolysis. The broad absorption band maximized at ∼ 490 nm (ε= 9.9 × 103 M -1 cm-1). The lifetime of the transient was found to be 100 ± 15 ps. The lifetime was not affected by the presence of pyrimidine dimers, which would be monomerized under these conditions. A longer-lived transient, tentatively identified as the solvated electron, was also detected. The neutral reduced flavin did not give a detectable transient.  相似文献   

8.
Abstract— The microsecond flash photolysis of 5-methoxyindole in aqueous solutions has been studied at γexc≥ 290 nm. Transients identified in this time realm in neutral solutions are: eaq-, the 5-methoxyindole radical cation (γmax≅ 440 nm), the neutral transient with γmax≅ 530 nm) and an unidentified oxygen sensitive transient with γmax≅ 435 nm. Radical cations and e-aq are shown to be produced in equal amounts consistent with a photoionization process as the only source of both transients. H+ quenching of fluorescence and radical cation production gives equivalent Stern-Volmer constants indicating that photoionization occurs from the fluorescent state. The unidentified oxygen sensitive transient exhibits a pK a of2–2.5 and is quenched at lower pH values indicating that it also has a fluorescent state precursor.  相似文献   

9.
Abstract— Indole derivatives including tryptophan can be used as photosensitizers of the splitting of pyrimidine dimers. The reaction can take place in frozen aqueous solutions as well as in fluid medium. Electron transfer from the indole ring to the dimer appears to be involved in the photosensitized reaction. Solvated electrons produced by flash photolysis in the presence of indoles or by pulse radiolysis are also able to split thymine dimers.
The splitting of pyrimidine dimers in DNA can be photosensitized by indole derivatives such as serotonin and by tryptophan-containing oligopeptides. Several methods including fluorescence and nuclear magnetic resonance have been used to show that the indole ring of these oligopeptides is able to stack with bases in nucleic acids. These stacked complexes are involved in the photosensitized reaction.
The splitting of pyrimidine dimers in DNA has also been photosensitized by the protein coded by gene 32 of phage T4 which binds strongly and cooperatively to single-stranded DNA. The mechanism of the splitting reaction as well as the possible use of this reaction to investigate the role of tryptophan residues in the binding of proteins to nucleic acids are discussed.  相似文献   

10.
Abstract— The triplet-triplet absorption spectra in aqueous solution of the acid (3LfH2+), the neutral (3LfH) and the basic (3Lf-) forms of lumifiavin (6,7,9-trimethylisoalloxazine) were measured by flash photolysis. The p K a values of the corresponding protolytic equilibria of the lumifiavin triplet were found to be 4.45±0.1 and 9.8±0.15.  相似文献   

11.
Abstract— The two main primary photoprocesses (electron ejection and H-atom release) for indole, 5-methoxyindole and N-methylindole in various polar and nonpolar solvents were studied as a function of the excitation energy and were correlated with the corresponding fluorescence quantum yields. In hydrocarbon solvents, N–H bond cleavage is the main primary photoprocess from the 1Bb band of the substrates with the exception of N-methylindole. In alcohols, both processes are of negligible importance. Hydrated electrons (eaq) are ejected from the relaxed singlet states of all three compounds in aqueous solutions with a similar yield for excitation at 280 and 254 nm (1La and 1Lb states). The yield increases when the excitation is into the 1Bb band. The quantum yields of the two primary processes from the higher excited states are generally lower than the fraction of molecules not converting to the fluorescent state. This is explained by an efficient back reaction in competition with a thermally activated radical release from an intermediate state or radical pair formed from the S2 (1Bb) state. The non-occurrence of a photoionization energy threshold is discussed.  相似文献   

12.
2-Methylnaphthoquinone (MQ) has been excited in water with a 20 ns laser flash at 353 nm and the resultant transient species have been observed optically. Triplet-state MQ (3MQ) decays on a sub-microsecond time scale. It has been characterized in terms of its absorption spectrum and quantum yield. Rate constants have been measured for the decay of 3MQ in infinitely dilute solution, for self-quenching by ground-state MQ, and for reactions of 3MQ with oxygen, thymine, uracil, 6-methyluracil, and orotic acid. The interaction of 3MQ with pyrimidines involves charge transfer to give the pyrimidine cation radical and the MQ : anion radical. These reactions are discussed in relation to the mechanism of pyrimidine photooxidation sensitized by MQ.  相似文献   

13.
Anthraquinone-2-sulfonate (AQS) photosensitizes pyrimidine dimer splitting. Electron abstraction from the dimer is thought to induce dimer splitting, but direct evidence for the existence and intermediacy of dimer radical cations has been lacking. By employing photochemically induced dynamic nuclear polarization, we have found emission signals in the NMR spectra of dimers upon photolysis of dimers in the presence of anthraquinone-2-sulfonate. The two dimers employed were cis, syn-thymine dimer in which the N(1)-positions were linked by a three-carbon bridge and the N(3), N(3')-dimethyl derivative of that compound. The anthraquinone-2-sulfonate sensitized photochemically induced dynamic nuclear polarization spectrum of the methylated derivative exhibited an emission signal from the dimer-C(6) hydrogens. This result implied the existence of a dimer radical cation (mD+.) formed by electron abstraction by excited anthraquinone-2-sulfonate and nuclear spin sorting within a solvent caged radical ion pair [mD+. AQS-.]. Product pyrimidine photochemically induced dynamic nuclear polarization signals were also seen [enhanced absorption by C(6)-hydrogens and emission by C(5)-methyl groups]. Nuclear spin polarization in the product resulted from spin sorting in one or more of its precursors, including mD+. The results support the conclusion that dimer radical cations not only exist but are intermediates in the photosensitized splitting of pyrimidine dimers by anthraquinonesulfonate.  相似文献   

14.
Abstract— In connection with the use of red light-photosensitizers for photodynamic therapy, the redox reactivity of excited metallophthalocyanines (M = Al, Ga) was investigated by flash photolysis in order to establish whether photooxidations proceed by Foote's mechanisms I or II. Aminoacids (tryptophan, tyrosine) were seen to function as electron transfer quenchers of the excited phthalocyanines with rate constants 107 k 104 M -1 s-1. This was not the case of purines or ATP. The ability of the excited phthalocyanines to sensitize photooxidations by mechanisms I and II is discussed in terms of evaluated rate constants.  相似文献   

15.
Abstract— The kinetics of the oxidation of a homologous series of 4,4'-di(n-alkyl)-bipyridinium (viologen) radicals by Ru(NH3)63+ in vesicle suspensions was studied using laser flash photolysis. The viologen radicals were produced photochemically in the bilayer membrane phase of the vesicles by electron transfer from the triplet state of chlorophyll-α. At high concentrations of Ru(NH3)63+, the rate of oxidation of the viologen radicals in the aqueous phase was limited by the rate at which the radicals diffused from the membrane to the aqueous phase. The exit rate constant decreased from 2 × 105 s−1 for the methyl viologen radical to 4 × 103 s−1 for the pentyl viologen radical. Both the exit rate constants and the calculated values for the equilibrium association constants of the viologen radicals were unexpectedly insensitive to the length of their alkyl substituents. This, as well as other data, suggests that the radicals that diffused into the aqueous phase tended to remain associated with the membrane-water interface.  相似文献   

16.
Abstract— The absorption and fluorescence spectra of indole-4-carboxylic acid in various solvents have indicated that the -COOH group is more planar with respect to the indole ring in the first excited singlet state (S1) than in the ground (S0) state. Relatively large Stokes' shifts indicate that polarisability and dipole moment of the molecule are increased predominantly upon excitation. Prototropic reactions in the S0 and S1 states are the same. The -COO- and -COOH+2 groups are not coplanar in the S0, but coplanar in the S1 state. pH-dependent fluorescence spectra have revealed that both protonation and deprotonation of the -COOH group increase the basicity of the molecule upon excitation.  相似文献   

17.
Abstract— Ultraviolet light causes a type of damage to the DNA of human cells that results in a DNA strand break upon subsequent irradiation with wavelengths around 300 nm. This DNA damage disappears from normal human fibroblasts within 5 h, but not from pyrimidine dimer excision repair deficient xeroderma pigmentosum group A cells or from excision proficient xeroderma pigmentosum variant cells. The apparent lack of repair of the ultraviolet light DNA damage described here may contribute to the cancer prone nature of xeroderma pigmentosum variant individuals. These experiments show that the same amount of damage was produced at 0°C and 37°C indicating a photodynamic effect and not an enzymatic reaction. The disappearance of the photosensitive lesions from the DNA is probably enzymatic since none of the damage was removed at 0°C. Both the formation of the lesion and its photolysis by near ultraviolet light were wavelength dependent. An action spectrum for the formation of photosensitive lesions was similar to that for the formation of pyrimidine dimers and(6–4) photoproducts and included wavelengths found in sunlight. The DNA containing the lesions was sensitive to wavelengths from 304 to 340 nm with a maximum at 313 to 317 nm. This wavelength dependence of photolysis is similar to the absorption and photolysis spectra of the pyrimidine(6–4) photoproducts  相似文献   

18.
Abstract— The phototransformation of native (124 kDa)oat phytochrome, Pr Pfr, Has been studied at 10C by two laser/ two-color flash photolysis. the overall PrPfr reaction yield did not vary with temperature within the range4–21C. Foloeing the excitation of Pr with a single 15 ns laser flash at 650nm, the formation of Pfr was quantitavely measured in a time-resolved experiment in the presence of a second 8 ns laser flash at 710 nm delayed from the initial flash. the second laser flash causes at 1.0 s after the initial laser flash a depletion of the uintermediate I700 as welll as a reduction of the Pfr absorption at 730 nm. The depletion of I700 correlates quantitavely with the reduction of Pfr formation. The absorpton spectra of I700 and of the following intermendiate, Ibi, were calculated assuming that the amount of Pr, which is photoconverted by a single laser, equals the amount of Pfr formed.  相似文献   

19.
Photophysical Properties of the Cationic Form of Neutral Red   总被引:1,自引:0,他引:1  
Abstract— Photophysical properties of the cationic form of neutral red (NRH+), a phenazine-based dye of biological importance, have been investigated in several protic and aprotic solvents using optical absorption, steady-state and time-resolved fluorescence and picosecond laser flash photolysis techniques. Absorption and fluorescence characteristics of the dye in protic solvents indicate the existence of intermolecular hydrogen bonding between the NRH+ and solvent molecules in the ground state as well as in the excited state. Measurements of the fluorescence lifetime in normal and heavy water also support the formation of intermolecular hydrogen bonding. Time-resolved transient absorption spectra obtained in the picosecond laser flash photolysis experiments show only the absorption band due to the Sn← S1 absorption. The picosecond transient absorption results do not indicate any spectral shifts attributable to the hydrogen bond formation dynamics between the excited NRH+ and the protic solvent molecules. It is inferred that the hydrogen bonding dynamics are much faster than the time resolution of our picosecond setup (∼35 ps).  相似文献   

20.
Abstract— Since purine free base in aqueous solution exists in different ionic forms at different pHs and most of its photoreactions are likely to involve the triplet excited states of these different ionic forms, electron paramagnetic resonance studies (EPR) have been performed in order to determine intersystem crossing quantum yields and other characteristic parameters of the excited triplet state of these forms. Intersystem crossing yields decrease with a decrease in pH, being 0.62, 0.37 and 0.10 in 8 M NaOH, 8 M NaCIO4 and 6M H3P04 glasses, respectively. Differences in triplet decay lifetimes 3.4, 2.5 and 3.1 s, as well as in root mean-square zero-field splitting (ZFS) parameter, D*, (0,1304, 0.1512 and 0.1353 cm-1) are also observed for the anionic, neutral and cationic species of purine free base. The EPR signals of the triplet state of the neutral and anionic forms have been observed simultaneously in the pH range of7–10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号