首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Theoretical analysis and experimental observations have shown that tensile stress inside an endothelial cell membrane is capable of growing in the direction opposite to blood flow and can accumulate to a level that is three or more orders of magnitude higher than flow-induced shear stress on the membrane surface. This phenomenon is called cell membrane tension accumulation (CMTA). We hypothesize that correlation may exist between the endothelial cell monolayer length or CMTA and secretory function of endothelial cells. To verify this hypothesis, a paired experimental study was devised to measure the secretion of endothelin (ET-1) and angiotensin II (Ang II) by two monolayers of cultured human glomerular vascular endothelial cell (HGVEC) monolayers subjected an identical steady shear stress. After replicate cultured HGVEC monolayer with two kinds of length of 6 cm and 10 cm were subjected to the same steady laminar shear stress of 0.45 N/m2 for 24 h, the average secretion rates of ET-1 and Ang II in 6 cm long increased l.7- and 0.5-fold (n=26, P<0.00l) over 10 cm long, respectively. Over 10 h of exposure to 0.65 N/m2, the average secretion rate of both ET-1 and Ang II by HGVEC monolayer of 6 cm in length exceeded 0.5-fold (n=26, P<0.0001) over 10 cm in length. All these demonstrated that the close relationship may exist between length of endothelial cell monolayer and secretion of ET-1 and Ang II by endothelial cells, indicating the possible existence of the cumulative effect of the tensile stress in the upper endothelial cell membrane under the shear flow field.  相似文献   

2.
The toxicity of hydroxylated or carboxylated MWCNTs to human endothelial cells was modest, and the toxicity was not exacerbated by ER stress inducer.  相似文献   

3.
To investigate expression of integrin β1 and its roles on adhesion between different cell cycle hepatocellular carcinoma cell (HCC) and human umbilical vein endothelial cells (HUVEC), the synchronous G1 and S phase HCC were achieved through thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Expression of integrin β1 on hepatocellular carcinoma cells was detected with flow cytometer. Further, the adhesive force of HCC to HUVEC and the role of integrin β1 in this adhesive course were studied by micropipette aspiration technique. The results showed that percentage of each cyclic phases of the controlled HCC (non-synchronous) are: G2+M phase, 11%; G1 phase, 54%; S phase, 36%; the synchronous rates of G1 and S phase HCC amount to 74 and 98%, respectively. The expressive fluorescent intensity of integrin β1 in G1 phase HCC is depressed significantly than the values of S phase and controlled HCC. Accordingly, the adhesive forces of G1 phase HCC to HUVEC was significantly lower than the value of S phase cells (P<0.01), but it has no remarkable difference when compared the adhesive force values of S phase HCC with control; the contribution of integrin β1 was about 50% in the adhesion of HCC to HUVEC. It suggested that HCC would be synchronized preferably in G1 and S phase with thymine-2-deoxyriboside and colchicines, the adhesive molecule integrin β1 expressed in a high lever in HCC and presented differences in vary cell cycle, and integrin β1 played an important roles in adhesion of HCC to HUVEC. Possibly, S phase HCC take a great action in this adhesive course.  相似文献   

4.
To investigate expression of integrin β1 and its roles on adhesion between different cell cycle hepatocellular carcinoma cell (HCC) and human umbilical vein endothelial cells (HUVEC), the synchronous G1 and S phase HCC were achieved through thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Expression of integrin β1 on hepatocellular carcinoma cells was detected with flow cytometer. Further, the adhesive force of HCC to HUVEC and the role of integrin β1 in this adhesive course were studied by micropipette aspiration technique. The results showed that percentage of each cyclic phases of the controlled HCC (non-synchronous) are: G2+M phase, 11%; G1 phase, 54%; S phase, 36%; the synchronous rates of G1 and S phase HCC amount to 74 and 98%, respectively. The expressive fluorescent intensity of integrin β1 in G1 phase HCC is depressed significantly than the values of S phase and controlled HCC. Accordingly, the adhesive forces of G1 phase HCC to HUVEC was significantly lower than the value of S phase cells (P<0.01), but it has no remarkable difference when compared the adhesive force values of S phase HCC with control; the contribution of integrin β1 was about 50% in the adhesion of HCC to HUVEC. It suggested that HCC would be synchronized preferably in G1 and S phase with thymine-2-deoxyriboside and colchicines, the adhesive molecule integrin β1 expressed in a high lever in HCC and presented differences in vary cell cycle, and integrin β1 played an important roles in adhesion of HCC to HUVEC. Possibly, S phase HCC take a great action in this adhesive course.  相似文献   

5.
Angiogenesis serves as a crucial factor in disease development and progression, such as cancer metastasis, and monocyte migration is one of the key steps for angiogenesis. Therapeutic modulation of angiogenesis is a promising new therapeutic avenue under investigation. In this study, effects of vascular endothelial growth factor (VEGF) and chondroitin sulfate A on monocyte migration were investigated. Human monocytic THP-1 cells were from Riken Cell Bank (Tsukuba, Japan) and vascular endothelial cells (VECs) were obtained from swine thoracic aorta. The migration experimental system was adapted from Falcon™ Cell Culture Inserts with pore sizes of 3 and 8 μm cultured endothelial cells or not on the insert polyethylene terephthalate (PET) membranes. Four VEGF concentrations (0, 10, 50 and 100 ng/ml) and three concentrations of chondroitin sulfate A (0, 1.25 and 5.0 mg/ml) were used to investigate their effects on THP-1 cell migration ability through PET membranes and VECs monolayer. The THP-1 cell migration was evaluated by counting the number of migrated cells related to the total number of cells under a microscope. We counted the migration cells every 1 h on a Tatai-type hemocytometer using an inverted microscope for total 7 h. For inserts with pore sizes of 3 and 8 μm, the THP-1 cell migration increased with VEGF concentrations; however, cell migration decreased with the chondroitin sulfate A concentration. Our results demonstrated that VEGF accelerated monocyte migration through endothelial monolayer and chondroitin sulfate A is an effective inhibitor of monocyte migration for angiogenesis.  相似文献   

6.
The effects of alternative stress, which was generated through a strong sound field apparatus set up in our lab, on cultured chrysanthemum callus cells were studied. Meanwhile we measured the deformability of chrysanthemum cell membranes and studied the influence of the cytoskeleton after the treatment of colchicine using micropipette aspiration technique. Based on our experimental results, we found that the deformability of cell membrane decreased in stress condition. However, the effect disappeared after the treatment of cytochalasin. Therefore, we thought that the reason on the deformability of cells decreasing was the microfilament rearranging and consequently the cells becoming more rigid under the alternative stress.  相似文献   

7.
Nitric oxide (NO) has been proved to be a potent vasodilator that played an important role in regulating vascular tones. Tanshinone, one of the active components of Radix Salvia miltiorrhiza, was used widely in clinics in China for treating cardiovascular diseases. The objective of this study was to sensitively and specifically investigate the effects of tanshinone IIA, one important pharmacological constituent of tanshinone, on the release of NO from human vascular endothelial cells (HVECs) by fluorescence imaging with an excellent fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacence (TMDCDABODIPY). After cells were incubated with tanshinone IIA, TMDCDABODIPY was employed to label NO. Following the tagging, real-time imaging of NO release from the cells was performed with inverted fluorescence microscope. The results of the experiments showed that tanshinone IIA could induce NO production significantly enhanced in HVECs. The activation of NO by tanshinone IIA may be employed therapeutically in modulating NO production in HVECs.  相似文献   

8.
Detection of cell surface proteins is widely used as molecular markers for initiation, progression and severity of many diseases. In particular, detection of cell adhesion molecules (CAMs) on endothelial cells is important as it indicates the extent of inflammation associated with several diseases including arthritis, asthma, tumor metastasis, etc. Here, we report, a rapid method for detection of CAMs on endothelial cells by covalently immobilizing TNF-α induced cells on a photoactivated polystyrene microtiter plate at 50 °C in 45 min followed by performing enzyme-linked immunosorbent assay (ELISA) technique at elevated temperature. Our method reduced the time of cell-ELISA to 3 h with results akin to conventional cell-ELISA carried out in 38 h. The method thus described herein could be potentially useful in clinical and research laboratories for rapid detection of cell surface proteins including CAMs on intact cell samples.  相似文献   

9.
3-Bromo-2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl reacts with NH4OH to give 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl, a product of the Favorsky rearrangement. 3-Bromo-2,2,6,6-tetramethyl-4-piperidinone is transformed under these conditions into a bicyclic amino ketone, while its 1-hydroxy derivative affords acyclic nitrosoenone. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1189–1191, June, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号