首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the Maker‐Breaker H‐game played on the edge set of the random graph . In this game two players, Maker and Breaker, alternately claim unclaimed edges of , until all edges are claimed. Maker wins if he claims all edges of a copy of a fixed graph H; Breaker wins otherwise. In this paper we show that, with the exception of trees and triangles, the threshold for an H‐game is given by the threshold of the corresponding Ramsey property of with respect to the graph H. © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 49, 558–578, 2016  相似文献   

2.
We consider random‐turn positional games, introduced by Peres, Schramm, Sheffield, and Wilson in 2007. A p‐random‐turn positional game is a two‐player game, played the same as an ordinary positional game, except that instead of alternating turns, a coin is being tossed before each turn to decide the identity of the next player to move (the probability of Player I to move is p ). We analyze the random‐turn version of several classical Maker–Breaker games such as the game Box (introduced by Chvátal and Erd?s in 1987), the Hamilton cycle game and the k‐vertex‐connectivity game (both played on the edge set of ). For each of these games we provide each of the players with a (randomized) efficient strategy that typically ensures his win in the asymptotic order of the minimum value of p for which he typically wins the game, assuming optimal strategies of both players.  相似文献   

3.
A large class of Positional Games are defined on the complete graph on n vertices. The players, Maker and Breaker, take the edges of the graph in turns, and Maker wins iff his subgraph has a given — usually monotone — property. Here we introduce the d‐diameter game, which means that Maker wins iff the diameter of his subgraph is at most d. We investigate the biased version of the game; i.e., when the players may take more than one, and not necessarily the same number of edges, in a turn. Our main result is that we proved that the 2‐diameter game has the following surprising property: Breaker wins the game in which each player chooses one edge per turn, but Maker wins as long as he is permitted to choose 2 edges in each turn whereas Breaker can choose as many as (1/9)n1/8/(lnn)3/8. In addition, we investigate d‐diameter games for d ≥ 3. The diameter games are strongly related to the degree games. Thus, we also provide a generalization of the fair degree game for the biased case. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

4.
In this paper we analyze biased Maker‐Breaker games and Avoider‐Enforcer games, both played on the edge set of a random board . In Maker‐Breaker games there are two players, denoted by Maker and Breaker. In each round, Maker claims one previously unclaimed edge of G and Breaker responds by claiming b previously unclaimed edges. We consider the Hamiltonicity game, the perfect matching game and the k‐vertex‐connectivity game, where Maker's goal is to build a graph which possesses the relevant property. Avoider‐Enforcer games are the reverse analogue of Maker‐Breaker games with a slight modification, where the two players claim at least 1 and at least b previously unclaimed edges per move, respectively, and Avoider aims to avoid building a graph which possesses the relevant property. Maker‐Breaker games are known to be “bias‐monotone”, that is, if Maker wins the (1,b) game, he also wins the game. Therefore, it makes sense to define the critical bias of a game, b *, to be the “breaking point” of the game. That is, Maker wins the (1,b) game whenever and loses otherwise. An analogous definition of the critical bias exists for Avoider‐Enforcer games: here, the critical bias of a game b * is such that Avoider wins the (1,b) game for every , and loses otherwise. We prove that, for every is typically such that the critical bias for all the aforementioned Maker‐Breaker games is asymptotically . We also prove that in the case , the critical bias is . These results settle a conjecture of Stojakovi? and Szabó. For Avoider‐Enforcer games, we prove that for , the critical bias for all the aforementioned games is . © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 46,651–676, 2015  相似文献   

5.
The smallest number of cliques, covering all edges of a graph , is called the (edge) clique cover number of and is denoted by . It is an easy observation that if is a line graph on vertices, then . G. Chen et al. [Discrete Math. 219 (2000), no. 1–3, 17–26; MR1761707] extended this observation to all quasi-line graphs and questioned if the same assertion holds for all claw-free graphs. In this paper, using the celebrated structure theorem of claw-free graphs due to Chudnovsky and Seymour, we give an affirmative answer to this question for all claw-free graphs with independence number at least three. In particular, we prove that if is a connected claw-free graph on vertices with three pairwise nonadjacent vertices, then and the equality holds if and only if is either the graph of icosahedron, or the complement of a graph on vertices called “twister” or the power of the cycle , for some positive integer .  相似文献   

6.
We study biased Maker/Breaker games on the edges of the complete graph, as introduced by Chvátal and Erd?s. We show that Maker, occupying one edge in each of his turns, can build a spanning tree, even if Breaker occupies b ≤ (1 ? o(1)) · edges in each turn. This improves a result of Beck, and is asymptotically best possible as witnessed by the Breaker‐strategy of Chvátal and Erd?s. We also give a strategy for Maker to occupy a graph with minimum degree c (where c = c(n) is a slowly growing function of n) while playing against a Breaker who takes b ≤ (1 ? o(1)) · edges in each turn. This result improves earlier bounds by Krivelevich and Szabó. Both of our results support the surprising random graph intuition: the threshold bias is asymptotically the same for the game played by two “clever” players and the game played by two “random” players. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

7.
8.
We study Maker‐Breaker games played on the edge set of a random graph. Specifically, we analyze the moment a typical random graph process first becomes a Maker's win in a game in which Maker's goal is to build a graph which admits some monotone increasing property \begin{align*}\mathcal{P}\end{align*}. We focus on three natural target properties for Maker's graph, namely being k ‐vertex‐connected, admitting a perfect matching, and being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker wins the k ‐vertex connectivity game exactly at the time the random graph process first reaches minimum degree 2k; with high probability Maker wins the perfect matching game exactly at the time the random graph process first reaches minimum degree 2; with high probability Maker wins the Hamiltonicity game exactly at the time the random graph process first reaches minimum degree 4. The latter two statements settle conjectures of Stojakovi? and Szabó. We also prove generalizations of the latter two results; these generalizations partially strengthen some known results in the theory of random graphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

9.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In a separate paper, we showed that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. The result was obtained by showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. In this paper, this deterministic result is used to show that the conjecture holds asymptotically almost surely for random d‐regular graphs when d = d(n) ≥ 3.  相似文献   

10.
We introduce and study a novel semi‐random multigraph process, described as follows. The process starts with an empty graph on n vertices. In every round of the process, one vertex v of the graph is picked uniformly at random and independently of all previous rounds. We then choose an additional vertex (according to a strategy of our choice) and connect it by an edge to v. For various natural monotone increasing graph properties , we prove tight upper and lower bounds on the minimum (extended over the set of all possible strategies) number of rounds required by the process to obtain, with high probability, a graph that satisfies . Along the way, we show that the process is general enough to approximate (using suitable strategies) several well‐studied random graph models.  相似文献   

11.
《Journal of Graph Theory》2018,87(2):176-187
For graphs G and H, let  denote the property that for every proper edge‐coloring of G (with an arbitrary number of colors) there is a rainbow copy of H in G, that is, a copy of H with no two edges of the same color. The authors (2014) proved that, for every graph H, the threshold function  of this property for the binomial random graph  is asymptotically at most , where denotes the so‐called maximum 2‐density of H. Nenadov et al. (2014) proved that if H is a cycle with at least  seven vertices or a complete graph with at least 19 vertices, then . We show that there exists a fairly rich, infinite family of graphs F containing a triangle such that if for suitable constants and , where , then almost surely. In particular, for any such graph F.  相似文献   

12.
The class of cographs is known to have unbounded linear clique‐width. We prove that a hereditary class of cographs has bounded linear clique‐width if and only if it does not contain all quasi‐threshold graphs or their complements. The proof borrows ideas from the enumeration of permutation classes.  相似文献   

13.
We present a general approach connecting biased Maker‐Breaker games and problems about local resilience in random graphs. We utilize this approach to prove new results and also to derive some known results about biased Maker‐Breaker games. In particular, we show that for , Maker can build a pancyclic graph (that is, a graph that contains cycles of every possible length) while playing a game on . As another application, we show that for , playing a game on , Maker can build a graph which contains copies of all spanning trees having maximum degree with a bare path of linear length (a bare path in a tree T is a path with all interior vertices of degree exactly two in T). © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 47, 615–634, 2015  相似文献   

14.
Consider the random graph process that starts from the complete graph on n vertices. In every step, the process selects an edge uniformly at random from the set of edges that are in a copy of a fixed graph H and removes it from the graph. The process stops when no more copies of H exist. When H is a strictly 2‐balanced graph we give the exact asymptotics on the number of edges remaining in the graph when the process terminates and investigate some basic properties namely the size of the maximal independent set and the presence of subgraphs.  相似文献   

15.
Let K denote the graph obtained from the complete graph Ks+t by deleting the edges of some Kt‐subgraph. We prove that for each fixed s and sufficiently large t, every graph with chromatic number s+t has a K minor. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 343–350, 2010  相似文献   

16.
Let k be a fixed integer and fk(n, p) denote the probability that the random graph G(n, p) is k‐colorable. We show that for k≥3, there exists dk(n) such that for any ϵ>0, (1) As a result we conclude that for sufficiently large n the chromatic number of G(n, d/n) is concentrated in one value for all but a small fraction of d>1. ©1999 John Wiley & Sons, Inc. Random Struct. Alg., 14, 63–70, 1999  相似文献   

17.
A hybrid heuristic for the maximum clique problem   总被引:1,自引:0,他引:1  
In this paper we present a heuristic based steady-state genetic algorithm for the maximum clique problem. The steady-state genetic algorithm generates cliques, which are then extended into maximal cliques by the heuristic. We compare our algorithm with three best evolutionary approaches and the overall best approach, which is non-evolutionary, for the maximum clique problem and find that our algorithm outperforms all the three evolutionary approaches in terms of best and average clique sizes found on majority of DIMACS benchmark instances. However, the obtained results are much inferior to those obtained with the best approach for the maximum clique problem.  相似文献   

18.
Using the well‐known Theorem of Turán, we present in this paper degree sequence conditions for the equality of edge‐connectivity and minimum degree, depending on the clique number of a graph. Different examples will show that these conditions are best possible and independent of all the known results in this area. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 234–245, 2003  相似文献   

19.
A study of ACO capabilities for solving the maximum clique problem   总被引:4,自引:0,他引:4  
This paper investigates the capabilities of the Ant Colony Optimization (ACO) meta-heuristic for solving the maximum clique problem, the goal of which is to find a largest set of pairwise adjacent vertices in a graph. We propose and compare two different instantiations of a generic ACO algorithm for this problem. Basically, the generic ACO algorithm successively generates maximal cliques through the repeated addition of vertices into partial cliques, and uses “pheromone trails” as a greedy heuristic to choose, at each step, the next vertex to enter the clique. The two instantiations differ in the way pheromone trails are laid and exploited, i.e., on edges or on vertices of the graph. We illustrate the behavior of the two ACO instantiations on a representative benchmark instance and we study the impact of pheromone on the solution process. We consider two measures—the re-sampling and the dispersion ratio—for providing an insight into the performance at run time. We also study the benefit of integrating a local search procedure within the proposed ACO algorithm, and we show that this improves the solution process. Finally, we compare ACO performance with that of three other representative heuristic approaches, showing that the former obtains competitive results.  相似文献   

20.
A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a StQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problem in an associated graph. Such a clique problem, which does not seem to have been studied before, is then solved with an exact and a heuristic algorithm. Some computational experience shows that our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号