首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《化学:亚洲杂志》2017,12(23):3061-3068
Two efficient iodine‐mediated strategies, which are economical and one‐pot, are described to access bis(imidazo[1,2‐a ]pyridin‐3‐yl)sulfanes and bis(imidazo[1,2‐a ]pyridin‐3‐yl)disulfanes in chloroform and acetic acid, respectively, by a direct oxidative homocoupling of imidazo‐heterocycles using inexpensive sodium sulfide as a sulfur source. These strategies are scalable, and an array of substrates delivered their corresponding stable sulfur‐bridged imidazo‐heterocycles in excellent yields.  相似文献   

2.
Heterosubstituted chalcones and oxopyrimidines were synthesized by the reaction of 2‐(4‐Chlorophenyl)imidazo[1,2‐a]pyridine‐3‐carbaldehyde 1 and different aryl acetophenone in the presence of catalytic amount of 40% alkali to give (2E)‐3‐(2‐(4‐chlorophenyl)imidazo[1,2‐a]pyridin‐3‐yl)‐1‐arylprop‐2‐en‐1‐ones 2a – l . Compounds 2a – l on reaction with urea in the presence of basic catalyst such as KOH to give 6‐(2‐(4‐chlorophenyl)imidazo[1,2‐a]pyridin‐3‐yl)‐4‐aryl pyrimidin‐2(1H)‐ones 3a – l . Their IR, 1H‐NMR, MASS spectral data, and elemental analysis were in accord with assigned structure. All the newly synthesized compounds were screened for their antimicrobial activity. J. Heterocyclic Chem., (2012).  相似文献   

3.
A new synthetic route to 6‐substituted‐imidazo[4,5‐c]pyridin‐2‐ons from 4‐aminopyridine has been investigated. 4‐Aminopyridine protected as alkyl carbamates were nitrated with dinitrogen pentoxide to the corresponding methyl, i‐propyl and t‐butyl 3‐nitropyridin‐4‐yl carbamates ( 5a‐c ) in 51‐63 % yields. Attempts to substitute these in the 6‐position by the ONSH and the VNS techniques succeeded with butyl‐amine and the t‐butyl carbamate 9 . From the methyl or t‐butyl 3‐nitropyridin‐4‐yl carbamates 5a, 5c 1,3‐dihydro‐2H‐imidazo[4,5‐c]pyridin‐2‐one ( 1 ) was formed in 73 and 39 % yields, respectively. t‐Butyl 6‐N‐butylamin‐3‐aminopyridin‐4‐yl carbamate ( 6 ) gave 6‐butylamino‐1,3‐dihydro‐2H‐imidazo[4,5‐c]‐pyridin‐2‐one (7) in 53 % yield.  相似文献   

4.
A new series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline were synthesized from oxidative cyclization of N′‐((2‐(p‐tolyloxy)quinoline‐3‐yl)methylene)isonicotinohydrazide in DMSO/I2 at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, 1H‐NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity. J. Heterocyclic Chem., (2011).  相似文献   

5.
A new, transformative methodology for the preparation of diketopyrrolopyrroles from aldehydes, primary amines, nitriles, and diethyl oxalacetate has been developed. It is now possible to prepare diketopyrrolopyrroles bearing an ordered arrangement of three different substituents from abundant and commercially available materials, allowing the independent regulation of all desired physicochemical properties. For the first time very electron‐rich (carbazol‐3‐yl, dimethylaminophenyl, pyrrolo[3,2‐b]pyrrolyl), and sterically hindered substituents (naphthalen‐1‐yl, quinolin‐4‐yl, acridin‐9‐yl, imidazo[1,5‐a]pyridin‐1‐yl, 2‐bromophenyl etc.) can be appended to the diketopyrrolopyrrole core by condensation of an appropriate nitrile with a pyrrolidin‐2‐one intermediate. Even greater synthetic possibilities are related to the fact that such demanding substituents as 4‐dimethylaminophenyl, indol‐3‐yl, and 2‐methoxyphenyl can be incorporated from aldehyde precursors, bypassing problems with the nitriles reactivity.  相似文献   

6.
Imidazole derivatives, namely, 1-((1-(piperazinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (PBIP), and 1-((1-(morpholinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (MBIP) were synthesized and investigated as inhibitors for mild steel corrosion in 15% HCl solution using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. It was found that the inhibition efficiency of both the inhibitors increases with increase in concentration of inhibitors and decreases with increase in temperature. The inhibitors, PBIP and MBIP, show corrosion inhibition efficiency of 92.6% and 91.4% at 300 ppm concentration, respectively, at 303 K. Polarization studies showed that both the studied inhibitors were of mixed type in nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for surface study of uninhibited and inhibited mild steel samples. The semi-empirical AM1 method was employed for theoretical calculations.  相似文献   

7.
A new method based on reaction of 4‐bromobut‐2‐enoates with N‐alkylimidazoles was proposed for obtaining 1R‐1H‐imidazo[1,2‐a]pyridin‐4‐ium‐8‐olate and 1‐R‐8‐methoxy‐1H‐imidazo[1,2‐a]pyridin‐4‐ium derivatives. The structures of synthesized compounds were confirmed by 1H, 13C NMR, elemental analysis, and X‐ray data.  相似文献   

8.
Synthesis and characterization of three nickel complexes [NiCl(L1)] 1 , [NiCl(L2)] 2 and [NiCl(L3)] 3 are described {HL1 = 4‐(2,5‐dimethoxyphenyl)‐1‐((pyridin‐2‐yl)methylene)thiosemicarbazide, HL2 = 4‐(3‐nitrophenyl)‐1‐((pyridin‐2‐yl)methylene)thiosemicarbazide and HL3 = 4‐(2,4‐dimethoxyphenyl)‐1‐((pyridin‐2‐yl)methylene)thiosemicarbazide} and among the tridentate ligands HL3 is reported for the first time. The structures of the complexes were assigned based on CHNS microanalysis, spectroscopic (IR & UV–Vis.) data and solution conductivity studies. The absence of any magnetism for the complexes proved their square planar geometry. Single crystals of complex 1 were grown and analyzed by XRD analysis which confirmed the complex planarity as each Ni atom connects to three (two nitrogen and one sulfur) atoms from the thiosemicarbazone ligand and an additional chlorine atom. Packing of the complex 1 in the crystal lattice was proved to stabilize via intermolecular hydrogen bonds. Antimicrobial activities of 1 – 3 were studied in vitro against fungal and bacterial species and, in several instances, the complexes possessed improved antibacterial behavior in comparison to chloramphenicol.  相似文献   

9.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

10.
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure.  相似文献   

11.
Condensation of coumarin‐4‐acetic acids ( 1 ) with ortho‐phenylenediamine ( 2 ) in anhydrous phosphoric acid afforded 4‐((1H‐benzo[d]imidazol‐2‐yl)methyl)‐2H‐chromen‐2‐ones ( 3 ). Attempted Mannich reaction of 3 with formalin and primary amines resulted in 4‐(2‐phenyl‐1,2,3,4‐tetrahydrobenzo[4,5]imidazo[1,2‐c]pyrimidin‐4‐yl)‐2H‐chromen‐2‐ones ( 6 ). The structures of synthesized compounds were elucidated by analyses including 2D HETCOR and DEPT experiments. Synthesized compounds have been subjected for anti‐inflammatory activity. Compound 6j exhibited promising anti‐inflammatory activity.  相似文献   

12.
《中国化学会会志》2017,64(9):1104-1110
A new unsymmetrical tridentate NNS Schiff base ligand, 2‐(2‐nitrophenylthio)‐N‐((pyridine‐2‐yl)methylene)benzenamine (L), and its Mn(II ), Ni(II ), Cu(II ), and Zn(II ) complexes were synthesized. These compounds were characterized by different physicochemical and spectroscopic techniques. The molecular structure of [NiL2 ](ClO4 )2 was determined by single‐crystal X‐ray diffraction. In this complex, two ligands coordinate through azomethine‐N, pyridine‐N, and thioether‐S, forming a mononuclear 6‐coordinate distorted octahedral geometry about a nickel.  相似文献   

13.
A simple and efficient process for the synthesis of novel heterocycles starting from thiocarbohydrazide was reported. Reaction of 2‐acetylbenzofuran ( 1 ) and thiocarbohydrazide ( 2 ) in ethanol containing acetic acid produced the corresponding thiocarbohydrazone 3 in 86% yield. Reaction of 3 and isatin ( 4 ) gave N,2‐bis(2‐oxoindolin‐3‐ylidene)hydrazine‐1‐carbothiohydrazine ( 6 ) in 65% yield, rather than the expected product, 3‐[(1‐methyl‐1‐benzofur‐2‐ylmethylidene)amino]‐1‐{[(3Z)‐2‐oxo‐2,3‐dihydro‐1H‐indol‐3‐ylidene]amino}thiourea ( 5 ). Reaction of 2‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazine carbothioamide ( 9 ) and chloroacetic acid or hydrazonoyl chloride 11 in basic medium gave (Z)‐2‐((E)‐((3‐(benzofuran‐2‐yl)‐1‐phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazono)thiazolidin‐4‐one ( 10 ) or 2‐((E)‐2‐((3‐(benzofuran‐2‐yl)‐1‐ phenyl‐1H‐pyrazol‐4‐yl)methylene)hydrazinyl)‐4‐((E)‐(4‐fluorophenyl)diazenyl)‐5‐methylthiazole ( 12 ) in 62% or 74%, respectively.  相似文献   

14.
A novel class of 5‐amino‐N′‐(1‐(pyridin‐4‐yl)ethylidene)‐1H‐pyrazole‐4‐carbohydrazides and 8‐(pyridin‐4‐yl)pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidin‐5(1H)‐ones was synthesized from reaction of 2‐cyano‐N′‐(1‐(pyridin‐4‐yl)ethylidene)‐acetohydrazide and 7‐(pyridin‐4‐yl)‐2‐thioxo‐2,3‐dihydropyrido[2,3‐d]pyrimidin‐4(1H)‐one with the appropriate hydrazonoyl halides. Moreover, 2‐cyano‐N′‐(1‐(pyridin‐4‐yl)‐ethylidene)‐acetohydrazide was used for the synthesis of 2‐cyano‐N′‐(1‐(pyridin‐4‐yl)ethylidene)‐acrylohydrazides and 2‐oxo‐2‐(2‐(1‐(pyridin‐4‐yl)ethylidene)‐hydrazinyl)‐acetohydrazonoyl cyanides. The structures of the newly prepared compounds were confirmed by both elemental and spectral analyses as well as by alternate synthesis. The anticancer activities of the prepared compounds were screened against the hepatocellular carcinoma (HepG2) cell line, and the results showed that most of the compounds exhibit considerable activities.  相似文献   

15.
The cocrystal salt tetraaquabis[trans‐1,2‐bis(pyridin‐4‐yl)ethene‐κN]iron(II) bis(1,1,3,3‐tetracyano‐2‐ethoxypropenide)–trans‐1,2‐bis(pyridin‐4‐yl)ethene (1/2), [Fe(C12H10N2)2(H2O)4](C9H5N4O)2·2C12H10N2, is a rare example of a mononuclear FeII compound with trans‐1,2‐bis(pyridin‐4‐yl)ethane (bpe) ligands. The complex cation resides on a crystallographically imposed inversion center and exhibits a tetragonally distorted octahedral coordination geometry. Both the symmetry‐independent bpe ligand and the cocrystallized bpe molecule are essentially planar. The 1,1,3,3‐tetracyano‐2‐ethoxypropenide counter‐ion is nonplanar and the bond lengths are consistant with significant electron delocalization. The extended structure exhibits an extensive O—H…N hydrogen‐bonding network with layers of complex cations joined by the cocrystallized bpe. Both the coordinated and the cocrystallized bpe are involved in π–π interactions. Hirshfeld and fingerprint plots reveal the important intermolecular interactions. Density functional theory was used to estimate the strengths of the hydrogen‐bonding and π–π interactions, and suggest that the O—H…N hydrogen bonds enhance the strength of the π‐interactions by increasing the polarization of the pyridine rings.  相似文献   

16.
Iron(III) complexes [Fe( L )( L′ )(NO3)]—in which L is phenyl‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 1 ), (anthracen‐9‐yl)‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 2 ), (pyreny‐1‐yl)‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 3 – 5 ), and L′ is catecholate ( 1 – 3 ), 4‐tert‐butyl catecholate ( 4 ), and 4‐(2‐aminoethyl)‐benzene‐1,2‐diolate ( 5 )—were synthesized and their photocytotoxic properties examined. The five electron‐paramagnetic complexes displayed a FeIII/FeII redox couple near ?0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1 m tetrabutylammonium perchlorate (TBAP). They showed unprecedented photocytotoxicity in red light (600–720 nm) to give IC50≈15 μM in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)‐DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.  相似文献   

17.
A series of novel imidazo[4,5‐b]pyridine derivatives were designed and synthesized. The structures of all the newly synthesized compounds were identified by spectroscopic data NMR, MS, and elemental analysis. Bioassay showed that the compounds exhibited potent fungicidal activities against Erysiphe graminis, Puccinia polysora, and so forth. Particularly, 2‐chloro‐5‐((5‐methoxy‐2‐(2‐(trifluoromethyl)phenyl)‐3H‐imidazo[4,5‐b]pyridin‐3‐yl)methyl)thiazole ( 9b ) displayed fungicidal potency against Ppolysora. Its EC50 value: 4.00 mg/L is comparable with that of tebuconazole. The structure–activity relationship for the target compounds is discussed.  相似文献   

18.
A series of novel isoindolone‐based macromolecules of medium‐sized heterocyclic rings, such as 7,8‐dihydro‐6H‐benzo[4,5][1,6,3]dioxazonino[2,3‐a]isoindol‐14(9aH)‐one derivatives ( 5a‐l ), were synthesized and its frame work incorporating with a triazole moiety on phenol, ie, 2‐(4‐((1‐(2‐methoxyphenyl)‐1H‐1,2,3‐triazol‐4‐yl)methoxy)phenyl)isoindoline‐1,3‐dione ( 9a‐f ) and also a triazole moiety on carboxylic acid, ie, (1‐(2‐methoxyphenyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl 4‐(1,3‐dioxoisoindolin‐2‐yl)benzoate derivatives ( 13a‐e ) with various substitutions on aryl ring system have synthesized. All the synthesized compounds were characterized and confirmed with IR, 1H NMR, 13C NMR, and ESI mass spectral analysis.  相似文献   

19.
A novel and practical strategy for the construction of imidazo[1,2‐a]pyridin‐2‐amine frameworks has been developed. The present sequential approach involves addition of arylamines to nitriles and I2/KI‐mediated oxidative C?N bond formation without purification of the intermediate amidines. This operationally simple synthetic process provides a facile access to a variety of new 2‐amino substituted imidazo[1,2‐a]pyridines and related heterocyclic compounds in an efficient and scalable fashion.  相似文献   

20.
In this work, we systematically investigated the effect of four bis(benzimidazole) derivatives containing different heteroatoms in molecular structures on inhibiting corrosion of N80 steel in 0.5 mmol·l?1 H2S solution by potentiodynamic polarization, electrochemical impedance spectroscopy and metallographic microscope. The results showed that within the range of 0.1–1.0 mmol·l?1, the adsorption of bis(benzimidazole) derivatives on N80 steel surface was found to follow Langmuir adsorption isotherm. Meanwhile, stable adsorbing monolayer between inhibitors and the metal surface was formed, which was confirmed by thermodynamic adsorption parameters (Kads, ). This series of bis(benzimidazole) derivatives exhibited obvious corrosion inhibitory properties for N80 steel. Moreover, they could both slow down the anodic dissolution of iron and the cathodic reduction reaction as mixed type corrosion inhibitors. The optimal inhibition efficiency was obtained for 1,3‐bis(benzimidazl‐2‐yl)‐2‐thiapropane (BBMS). Hopefully, this series of inhibitors might find applications in anti‐corrosion and many other areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号