共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of a VAMAS (Versailles project on Advanced Materials and Standards) interlaboratory study on organic depth profiling, in which twenty laboratories submitted data from a multilayer organic reference material. Individual layers were identified using a range of different sputtering species (C60n+, Cs+, SF5+ and Xe+), but in this study only the C60n+ ions were able to provide truly ‘molecular’ depth profiles from the reference samples. The repeatability of profiles carried out on three separate days by participants was shown to be excellent, with a number of laboratories obtaining better than 5% RSD (relative standard deviation) in depth resolution and sputtering yield, and better than 10% RSD in relative secondary ion intensities. Comparability between laboratories was also good in terms of depth resolution and sputtering yield, allowing useful relationships to be found between ion energy, sputtering yield and depth resolution. The study has shown that organic depth profiling results can, with care, be compared on a day‐to‐day basis and between laboratories. The study has also validated three approaches that significantly improve the quality of organic depth profiling: sample cooling, sample rotation and grazing angles of ion incidence. © Crown copyright 2010. 相似文献
2.
Yu. Kudriavtsev S. Gallardo O. Koudriavtseva A. Escobosa V. M. Sanchez–R M. Avendaño R. Asomoza M. Lopez‐Lopez 《Surface and interface analysis : SIA》2011,43(10):1277-1281
Reconstruction of original element distribution at semiconductor interfaces using experimental SIMS profiles encounters considerable difficulties because of the matrix effect, sputtering rate change at the interface, and also a sputtering‐induced broadening of original distributions. We performed a detailed depth profiling analysis of the Al step‐function distribution in GaAs/AlxGa1?xAs heterostructures by using Cs+ primary ion beam sputtering and CsM+ cluster ion monitoring (where M is the element of interest) to suppress the matrix effect. The experimental Depth Resolution Function (DRF) was obtained by differentiation of the Al step‐function profile and compared with the ‘reference’ DRF found from depth profiling of an Al delta layer. The difference between two experimental DRFs was explained by the sputtering rate change during the interface profiling. We experimentally studied the sputtering rate dependence on the AlxGa1?xAs layer composition and applied it for a reconstruction of the DRF found by differentiating the Al step‐function distribution: the ‘reconstructed’ and ‘reference’ DRFs were found to be in good agreement. This confirmed the correctness of the treatment elaborated. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
3.
Ashley A. Ellsworth Christopher N. Young William F. Stickle Amy V. Walker 《Surface and interface analysis : SIA》2017,49(10):991-999
X‐ray photoelectron spectroscopy is used to study a wide variety of material systems as a function of depth (“depth profiling”). Historically, Ar+ has been the primary ion of choice, but even at low kinetic energies, Ar+ ion beams can damage materials by creating, for example, nonstoichiometric oxides. Here, we show that the depth profiles of inorganic oxides can be greatly improved using Ar giant gas cluster beams. For NbOx thin films, we demonstrate that using Arx+ (x = 1000‐2500) gas cluster beams with kinetic energies per projectile atom from 5 to 20 eV, there is significantly less preferential oxygen sputtering than 500 eV Ar+ sputtering leading to improvements in the measured steady state O/Nb ratio. However, there is significant sputter‐induced sample roughness. Depending on the experimental conditions, the surface roughness is up to 20× that of the initial NbOx surface. In general, higher kinetic energies per rojectile atom (E/n) lead to higher sputter yields (Y/n) and less sputter‐induced roughness and consequently better quality depth profiles. We demonstrate that the best‐quality depth profiles are obtained by increasing the sample temperature; the chemical damage and the crater rms roughness is reduced. The best experimental conditions for depth profiling were found to be using a 20 keV Ar2500+ primary ion beam at a sample temperature of 44°C. At this temperature, there is no, or very little, reduction of the niobium oxide layer and the crater rms roughness is close to that of the original surface. 相似文献
4.
R. J. H. Morris M. G. Dowsett S. H. Dalal D. L. Baptista K. B. K. Teo W. I. Milne 《Surface and interface analysis : SIA》2007,39(11):898-901
In this paper we demonstrate how secondary ion mass spectrometry (SIMS) can be applied to ZnO nanowire structures for gold catalyst residue determination. Gold plays a significant role in determining the structural properties of such nanowires, with the location of the gold after growth being a strong indicator of the growth mechanism. For the material investigated here, we find that the gold remains at the substrate–nanowire interface. This was not anticipated as the usual growth mechanism associated with catalyst growth is of a vapour–liquid–solid (VLS) type. The results presented here favour a vapour–solid (VS) growth mechanism instead. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
A. G. Shard P. J. Brewer F. M. Green I. S. Gilmore 《Surface and interface analysis : SIA》2007,39(4):294-298
Sputter‐depth profiles of model organic thin films on silicon using C60 primary ions have been employed to measure sputtering yields and depth resolution parameters. We demonstrate that some materials (polylactide, Irganox 1010) have a constant and high sputtering yield, which varies linearly with the primary ion energy, whereas another material (Alq3) has lower, fluence‐dependent sputtering yields. Analysis of multi‐layered organic thin films reveals that the depth resolution is a function of both primary ion energy and depth, and the sputtering yield depends on the history of sputtering. We also show that ~30% of repeat units are damaged in the steady‐state regime during polylactide sputtering. Crown Copyright © 2006. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. 相似文献
6.
Electrospray droplet impact (EDI) was applied to the analysis of peptides. The etching rate of bradykinin was estimated to be ~2 nm/min. This value is about one order of magnitude greater than the etching rate for SiO2 (0.2 nm/min). Considering that the etching rate of argon cluster ions Ar700+ for organic compounds is more than two orders of magnitude larger than that for inorganic materials, the rather small difference in etching rates of EDI for organic and inorganic materials is unique. When water/ethanol (1/1, vol%) solution of gramicidin S and arginine was dried in air, [gramicidin S + H]+ was observed as a predominant signal with little [Arg + H]+ right after the EDI irradiation, indicating that EDI is capable of detecting the analytes enriched on the sample surface. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
7.
Andreas Wucher 《Surface and interface analysis : SIA》2008,40(12):1545-1551
A simple model which describes the essential features commonly observed in a molecular sputter depth profile is presented. General predictions of the dependence of measured molecular ion signals on the primary ion fluence are derived for the specific case where a mass spectrometric technique such as SIMS or secondary neutral mass spectrometry (SNMS) is used to analyze the momentary surface. The results are compared with recent experimental data on molecular depth profiles obtained by cluster‐ion‐initiated SIMS of organic overlayers. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
The application of image processing in secondary ion mass spectrometry is discussed. The Cameca 4f SIMS uses a single microchannel plate and a highly sensitive camera in combination with an image processor with real time capabilities (Kontron IBAS). An automation procedure with image integration, extended dynamic range image acquisition and retro depth profiling is presented and illustrated with practical applications. 相似文献
9.
Mariavitalia Tiddia Martin P. Seah Alex G. Shard Guido Mula Rasmus Havelund Ian S. Gilmore 《Surface and interface analysis : SIA》2020,52(6):327-334
Secondary ion mass spectrometry studies have been made of the removal of the degraded layer formed on polymeric materials when cleaning focused ion beam (FIB)-sectioned samples comprising both organic and inorganic materials with a 30-keV Ga+ FIB. The degraded layer requires a higher-than-expected Ar gas cluster ion beam (GCIB) dose for its removal, and it is shown that this arises from a significant reduction in the layer sputtering yield compared with that for the undamaged polymer. Stopping and Range of Ions in Matter calculations for many FIB angles of incidence on flat polymer surfaces show the depth of the damage and of the implantation of the Ga+ ions, and these are compared with the measured depth profiles for Ga+-implanted flat polymer surfaces at several angles of incidence using an Ar+ GCIB. The Stopping and Range of Ions in Matter depth and the measured dose give the sputtering yield volume for this damaged and Ga+-implanted layer. These, and literature yield values for Ga+ damaged layers, are combined on a plot showing how the changing sputtering yield is related to the implanted Ga density for several polymer materials. This plot contains data from both the model flat poly(styrene) surfaces and FIB-milled sections showing that these 2 surfaces have the same yield reduction. The results show that the damaged and Ga+-implanted layer's sputtering rate, after FIB sectioning, is 50 to 100 times lower than for undamaged polymers and that it is this reduction in sputtering rate, rather than any development of microtopography, that causes the high Ar+ GCIB dose required for cleaning these organic surfaces. 相似文献
10.
Pavel Andreevich Yunin Yurii Nikolaevich Drozdov Mikhail Nikolaevich Drozdov 《Surface and interface analysis : SIA》2013,45(8):1228-1232
We study the deconvolution of the secondary ion mass spectrometry (SIMS) depth profiles of silicon and gallium arsenide structures with doped thin layers. Special attention is paid to allowance for the instrumental shift of experimental SIMS depth profiles. This effect is taken into account by using Hofmann's mixing‐roughness‐information depth model to determine the depth resolution function. The ill‐posed inverse problem is solved in the Fourier space using the Tikhonov regularization method. The proposed deconvolution algorithm has been tested on various simulated and real structures. It is shown that the algorithm can improve the SIMS depth profiling relevancy and depth resolution. The implemented shift allowance method avoids significant systematic errors of determination of the near‐surface delta‐doped layer position. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
11.
L. Kotis M. Menyhard A. Sulyok G. Sáfrán A. Zalar J. Kovač P. Panjan 《Surface and interface analysis : SIA》2009,41(10):799-803
The relative sputtering yield of carbon with respect to tantalum was determined for 1 keV Ar+ ion bombardment in the angular range of 70°–82° (measured from surface normal) by means of Auger electron spectroscopy depth profiling of C/Ta and Ta/C bilayers. The ion bombardment‐induced interface broadening was strongly different for the C/Ta and Ta/C, whereas the C/Ta interface was found to be rather sharp, the Ta/C interface was unusually broad. Still the relative sputtering yields (YC/YTa) derived from the Auger electron spectroscopy depth profiles of the two specimens agreed well. The relative sputtering yields obtained were different from those determined earlier on thick layers, calculated by simulation of SRIM2006 and by the fitting equation of Eckstein. The difference increases with increase of angle of incidence. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
An indirect, compositional depth profiling of an inorganic multilayer system using a helium low temperature plasma (LTP) containing 0.2% (v/v) SF6 was evaluated. A model multilayer system consisting of four 10 nm layers of silicon separated by four 50 nm layers of tungsten was plasma‐etched for (10, 20, 30) s at substrate temperatures of (50, 75, and 100) °C to obtain crater walls with exposed silicon layers that were then visualized using time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) to determine plasma‐etching conditions that produced optimum depth resolutions. At a substrate temperature of 100 °C and an etch time of 10 s, the FWHM of the second, third, and fourth Si layers were (6.4, 10.9, and 12.5) nm, respectively, while the 1/e decay lengths were (2.5, 3.7, and 3.9) nm, matching those obtained from a SIMS depth profile. Though artifacts remain that contribute to degraded depth resolutions, a few experimental parameters have been identified that could be used to reduce their contributions. Further studies are needed, but as long as the artifacts can be controlled, plasma etching was found to be an effective method for preparing samples for compositional depth profiling of both organic and inorganic films, which could pave the way for an indirect depth profile analysis of inorganic–organic hybrid structures that have recently evolved into innovative next‐generation materials. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
13.
P.A. Yunin Yu.N. Drozdov M.N. Drozdov O.I. Khrykin V.I. Shashkin 《Surface and interface analysis : SIA》2017,49(2):117-121
The possibilities of quantitative secondary ion mass spectrometry (SIMS) depth profiling of Al in AlxGa1 ? xN/AlN/GaN transistor heterostructures are shown. Using a series of test structures for a TOF.SIMS‐5 time‐of‐flight mass spectrometer, we obtained a refined linear calibration dependence of the secondary‐ion yield on the composition ×, namely, Y(CsAl+)/Y(CsGa+) = K × x/(1 ? x), with a high linear correlation coefficient, Rl = 0.9996, which permits quantitative SIMS analysis of relatively thick AlGaN barrier layers. The method of profile reconstruction with allowance for the main artifacts of ion sputtering has been first applied for the analysis of GaN/AlGaN/AlN/GaN high electron mobility transistor structure. This method permits to perform quantitative analysis of the thickness and composition of a nanometer‐thin AlN sublayer and to estimate the measurement error. For the structure being studied, the AlN sublayer is 1.2 ± 0.2 nm thick. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
Rasmus Havelund Martin P. Seah Ian S. Gilmore 《Surface and interface analysis : SIA》2019,51(13):1332-1341
Four simple methods are evaluated to determine their accuracies for establishing the interface location in secondary ion mass spectrometry intensity depth profiles of organic layers where matrix effects have not been measured. Accurate location requires the separate measurement of each ion's matrix factor. This is often not possible, and so estimates using matrix-less methods are required. Six pure organic material interfaces are measured using many secondary ions to compare their locations from the four methods with those from full evaluation with matrix terms. For different secondary ions, matrix effects cause the apparent interface positions to vary over 20 nm. The shifts in the intensity profiles on going from a layer of P into a layer of Q are in the opposite direction to that for going from Q into P, so doubling layer thickness errors. The four methods are as follows: M1, use of the median interface position in the intensity profiles for the five lightest ions for 15 ≤ m/z ≤ 150; M2, extrapolation of the position for each ion to m/z = 0 for ions with m/z ≤ 150; M3, as M2 but for m/z ≤ 300; and M4, the extreme positions for all m/z ≤ 100. Comparison with the location using matrix terms shows their ranking, from best to worst, to be M4, M3, M1, and M2 with average errors of 10%, 12%, 14%, and 17%, respectively, of the profile interface full widths at half maximum. Use of pseudo-molecular ions is very much poorer, exceeding 50%, and should be avoided. 相似文献
15.
Phenomena accompanying electrochemical doping of solid fullerene films with potassium were studied by sputter ion depth profiling
(XPS and SIMS). The potassium distribution was determined, and artifacts associated with possible damage of the layer composition
caused by ion impact were investigated and discussed. To compare the charge transfer while reductive doping is taking place
at fullerene/solution interface with doping from gas phase, model layers were prepared and doped by potassium under UHV conditions.
It was found that sputtering by Ar+ primary ions yields both accurate information on the alkaline metal distribution and on its concentration. Sputtering by
O+ ions led to an enrichment of potassium, apparently due to the reactivity of oxygen with the fullerene matrix. It is shown
that the reductive doping starts at the fullerene/solution interface. The concentration of potassium in the doped films was
found to be lower than expected from the charge transferred during the electrochemical reduction. Other phase transformations
such as hydrogenation are discussed.
Received March 4, 2002; accepted July 26, 2002 相似文献
16.
Sample rotation during sputter depth profiling can improve the measured depth resolution. We examine some of the practical issues of particular relevance to rotation conditions in SIMS. There are many ways of arranging the rotation for sputtering and, to illustrate the issues, one configuration is studied. Through simulations of the spatial distribution of ion dose using a rastered ion beam and sample rotation, we demonstrate that significant variations in the distribution of ion dose across the surface can occur during the profile. With rotational frequencies much lower than raster frequencies, as used for Auger and XPS, these variations are typically small and have the same periodicity as the rotation. If rotational frequencies are similar to, or larger than the raster frequency, then large spatial variations in dose can occur. In this case, extreme care must be taken to ensure that the two frequencies are not related by a simple rational number and that the sputtering ion beam size should be significantly broader than the line spacing of the raster, but significantly smaller than the raster size. Specific recommendations are provided for setting both the rotation frequency and the size of the sputtering ion beam in order to ensure that the relative standard deviation of the ion dose across the analysis area remains lower than 1%. However, the best method may be a stepwise rotation of 90° after each analysis and sputtering cycle. © Crown copyright 2011. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. 相似文献
17.
《Surface and interface analysis : SIA》2003,35(6):544-547
We have developed multiple short‐period delta layers as a reference material for SIMS ultra‐shallow depth profiling. Boron nitride delta layers and silicon spacer layers were sputter‐deposited alternately, with a silicon spacer thickness of 1–5 nm. These delta‐doped layers were used to measure the sputtering rate change in the initial stage of oxygen ion bombardment. A significant variation of sputtering rate was observed in the initial 3 nm or less. The sputtering rate in the initial 3 nm was estimated to be about four times larger than the steady‐state value for 1000 eV oxygen ions. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
18.
《Surface and interface analysis : SIA》2005,37(1):90-91
This International Standard specifies a secondary ion mass spectrometric method using magnetic‐sector or quadrupole mass spectrometers for depth profiling of boron in silicon, and using stylus profilometry or optical interferometry for depth calibration. This method is applicable to single‐crystal, polycrystal or amorphous silicon specimens with boron atomic concentrations between 1 × 1016 and 1 × 1020 atoms cm?3, and to the crater depth of 50 nm or deeper. Optical interferometry is generally applicable to crater depths in the range 0.5–5 µm. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
The behavior and mechanism of background signals during depth profiling of atmospheric elements using dual-beam time-of-flight secondary ion mass spectrometry (TOF-SIMS) have been experimentally investigated for silicon wafers. The background signals of atmospheric elements were found to be inversely proportional to the sputtering rate. Most of the background signals are largely attributable to the accumulation of components through adsorption and ion bombardment in the pre-equilibrium state. On the other hand, the contribution of real-time adsorption during the instant after the last sputtering in the equilibrium state is negligible under the present experimental conditions. H2O is dominant in the background formation process of hydrogen and oxygen, which is supported by the higher adsorption coefficients. The background levels of carbon and nitrogen are lower than those of hydrogen and oxygen. Furthermore, the background signal of carbon with respect to the sputtering rate shows a different trend than the other elements. This could be attributed to accumulation in the pre-equilibrium state. These results indicate that the background levels can be lowered close to those of dynamic-SIMS by using an extremely high sputtering rate in dual-beam TOF-SIMS. 相似文献
20.
《Surface and interface analysis : SIA》2018,50(1):123-127
A simple analytical function is derived to describe the interface shapes measured in sputter depth profiling by using X‐ray photoelectron spectroscopy or secondary ion mass spectrometry. This function involves the convolution of a central Gaussian function, often taken to describe the roughness, together with an exponential tail to describe mixing and an exponential approach often taken to describe an information depth. This model is consistent with Hofmann's mixing‐roughness‐information model that does the same by numerical analysis, but we present a direct analytical function that is more transparent to the user. The differential of the function gives Dowsett's function for delta layers. Depending on which of the 3 base parameters are identified as sample related, the analyst can obtain the centroid of the underlying composition. These functions are used to show the extent that the common measure of depth resolution for step edges and delta functions diverge as the profile becomes less Gaussian. 相似文献