首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Carbon fibers were coated in an attempt to improve the interfacial properties between carbon fibers and ultra‐high molecular weight polyethylene resin matrix. Atomic force microscopy, scanning electron microscopy, and X‐ray photoelectron spectroscopy were performed to characterize the changes of carbon fiber surface. Atomic force microscopy results show that the coating of carbon fiber significantly increased the carbon fiber surface roughness. X‐ray photoelectron spectroscopy indicates that silicon containing functional groups obviously increased after modification. Interlaminar shear strength was used to characterize the interfacial properties of the composites.  相似文献   

2.
Pitch‐based short carbon fibers (CFs) were treated by air oxidation and cryogenic nitrogen, respectively. Thereafter the treated and untreated CFs were incorporated into polyimide (PI) matrix to form composites. The CFs before and after treatment were examined by XPS and SEM.The flexural strength of the specimen was determined in a three‐point test machine and the tribological properties of PI composites sliding against GCr15 steel rings were evaluated on an M‐2000 model ring‐on‐block test rig. The results show that the surface of the treated CFs became rougher. Lots of active groups formed on the CF surface after air oxidation.The treatment can effectively improve the mechanical and tribological properties in their PI composites due to the enhanced fiber‐matrix interfacial bonding. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We propose a novel method to uniformly graft high‐density carbon nanotubes (CNTs) onto carbon fiber (CF) by using coupling agents. Coupling agents can supply much more active groups, which is beneficial for grafting high‐density CNTs onto CF surface. After CNT grafting treatment, there are still substantial amounts of reactive groups, which can further react with various types of molecules to meet different requirements. To create chemical bonding between CF and high‐density polyethylene, CF‐CNT was further grafted get reinforcement. The interfacial adhesion of the resulting composites showed a dramatic improvement.  相似文献   

4.
The influence of chain lengths on interfacial performances of carbon fiber/polyarylacetylene composites was studied. For this purpose, four coupling agents, methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and dodecyltrimethoxysilane, were grafted onto fiber surface to obtain different chain lengths. The resulting carbon fiber surface was characterized by XPS and dynamic contact angle test. Interfacial adhesion in the resulting fiber reinforced polyarylacetylene resin composites was also evaluated by fracture morphology analysis and interfacial shear strength test. It was found that the interfacial adhesion in composites greatly increased with chain lengths on fiber surface. The improvement of interfacial adhesion was attributed to the interaction between the chain of coupling agents on fiber surface and that of polyarylacetylene resin at the interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Carbon nanotubes (CNTs) have been identified as excellent nanoreinforcements for carbon fiber (CF)–reinforced polymers regarding a wide range of engineering applications. The outstanding properties of CNTs, such as their large surface area, high mechanical strength, and low manufacturing cost bring them to be distinguished nanoreinforcements for carbon fiber–reinforced polymers to form multifunctional and multiscale composites. Electrophoretic deposition of graphene oxide for CNTs onto the CF surface was conducted. The presence of graphene oxide–CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the polyimide (PI).  相似文献   

6.
In this study, the reinforcing mechanism of amine functionalized on carbon fibers (CFs) has been precisely discussed, and the differences between aliphatic and aromatic compounds have been illustrated. Polyacrylonitrile‐based CFs were functionalized with ethylenediamine, 4,4‐diaminodiphenyl sulphone, and p‐aminobenzoic acid (PAB), and CF‐reinforced epoxy composites were prepared. The structural and surface characteristics of the functionalized CFs were investigated using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), and scanning electron microscopy (SEM). Mechanical properties in terms of tensile and flexural strengths and moduli were studied. The FT‐IR results confirm the success in bonding amines on the CF surface. After treatment of CFs, the oxygen and nitrogen contents as well as the N/C ratio showed an increase. XPS results provided evidence of the chemical reaction during functionalization, rather than being physically coated on the CF surface. Chemical modification of CF with diamines led to considerable enhancement in compatibility of CF filaments and epoxy resin, and remarkable improvements were seen in both tensile and flexural properties of the reinforced composites. SEM micrographs also confirmed the improvement of interface adhesion between the modified CFs and epoxy matrix. Finally, it can be concluded that PAB is a promising candidate to functionalize CF in order to improve interfacial properties of CF/epoxy composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The effects of surface treatment of a carbon fiber (CF) by supersonic atmosphere plasma spraying (SAPS) on the interfacial adhesion behavior and morphology of polypropylene/polystyrene (PP/PS) matrix blends filled CF composites were investigated. Effects of surface treated a commercial CF on mechanical properties are studied. Contact angle was measured to examine the changes in wettability of the CF. The chemical and morphological changes were characterized by using X‐ray photoelectron spectroscopy and scanning electron microscopy. PP/PS/CF composites were fabricated with and without SAPS treatment, and their interlaminar fracture toughnesses were compared. The results showed that the interlaminar shear strength of composites has been greatly improved filled SAPS modification CF. The water contact angle of resin sample decreased 50% after addition of SAPS surface‐treated CF. Scanning electron microscopy results on the fractured surface exhibited PP/PS blends adhered well around the CFs of the SAPS‐treated specimen compared with that of the untreated specimen. This attributed to the CF interlock, and it improves the wetting between fibers and resins. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Polyacrylamideacrylate (PAN)‐based carbon fibers were submitted to nitric acid oxidation treatments to improve the interfacial adhesion of the carbon fiber (CF)‐reinforced polyimide (CF/PI) composite. The carbon fiber surfaces were characterized by X‐ray photoelectron spectroscopy (XPS). Nitric acid oxidation not only affects the oxygen concentration but also produces an appreciable change in the nature of the chemical functions, namely the conversion of hydroxy‐type oxygen into carboxyl functions. Nitric acid oxidation treatment modifies the element constituting the fiber, the nitrogen concentration being about 1.2 times higher at the fiber external surface compared to the untreated one. The mechanical and tribological properties of the polymide (PI) composites reinforced by the carbon fibers treated with nitric acid oxidation were investigated. Results showed that the tensile strength of the CF/PI composites improved remarkably due to nitric acid treatment along with enhancement in friction and wear performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
提高PBO纤维/环氧树脂复合材料界面结合的研究   总被引:2,自引:0,他引:2  
本文采用表面化学蚀刻与溶胀法结合、化学偶联法与氩气低温等离子体表面处理技术结合的方法对聚苯撑苯并二。唑(PBO)纤维进行表面改性。探讨了不同改性方法对纤维表面性能的影响。同时,采用FTIR和SEM等方法对处理前后纤维表面化学结构及形态进行了表征。  相似文献   

11.
A simple and efficient chemical method was developed to graft directly carbon nanofibers (CNFs) onto carbon fiber (CF) surface to construct a CF‐CNF hierarchical reinforcing structure. The grafted CF reinforcements via covalent ester linkage at low temperature without any usage of dendrimer or catalyst was investigated by FTIR, X‐ray photoelectron spectroscopy, Raman, scanning electron microscopy, atomic force microscopy, dynamic contact angle analysis, and single fiber tensile testing. The results indicated that the CNFs with high density could effectively increase the polarity, wettability, and roughness of the CF surface. Simultaneous enhancements of the interfacial shear strength, flexural strength, and dynamic mechanical properties as well as the tensile strength of CFs were achieved, for an increase of 75.8%, 21.9%, 21.7%, and 0.5%, respectively. We believe the facile and effective method may provide a novel and promising interface design strategy for next‐generation advanced composite structures.  相似文献   

12.
The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon‐containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E‐glass epoxy resin composites were surface treated with the Accelerated Thermo‐molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n‐methylpyrrolidone solution, injected via specially designed flame‐treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF‐SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF‐SIMS showed a significant decrease in silicon‐containing species on the surface after ATmaP treatment. E‐glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and C?O functional groups (from XPS) and higher concentrations of oxygen and nitrogen‐containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF‐SIMS). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
PMR (polymerization of monomer reactants) -15 was formulated to use as a matrix resin for high performance carbon fiber-reinforced composite materials. Monomers for the PMR-15 were characterized using Fourier transform infrared spectroscopy. Molecular weight change during cure was investigated using gel permeation chromatography. Thermal analysis was carried out to investigate glass transition and thermal degradation. Cure behavior of a glass/PMR-15 prepreg was investigated using a dynamic mechanical analyzer. Flexural strength of a cured carbon/PMR-15 composite was affected by cure temperature and pressure. The morphology of the cured carbon/PMR-15 was affected by cure conditions as well as by the surface conditions of the carbon fibers. A scanning electron micrograph of the composite made of untreated carbon fibers showed a void-trapped morphology.  相似文献   

14.
In the present research, a multifunctional hierarchical reinforcement was prepared by chemical modification of carbon fibers (CFs) with halloysite nanotubes (HNTs) by the bridging diethylenetriaminepentaacetic acid (DTPA) for improving interfacial microstructures and properties of composites. Surface structures and groups of modified HNTs and CFs were characterized systematically. The uniform distributions of the introduced DTPA and HNTs helped to increase fiber polarity, surface energy, and wettability. As a consequence, significant enhancements of interfacial properties and hydrothermal aging resistance of composites were achieved, and interfacial reinforcing mechanisms have also been studied. Moreover, the storage modulus showed a 17.95% improvement, and the glass transition temperature was enhanced by 17°C by dynamic mechanical analysis testing.  相似文献   

15.
Changes in surface physicochemical structures of polyacrylonitrile‐based carbon fibers resulted from low current density electrochemical oxidation were monitored by scanning electron microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The relationship between the interlaminar shear strength (ILSS) values of carbon fiber‐reinforced polymers (CFRPs) and carbon fiber surface chemistry including elemental ratios and the relative content of oxygen‐containing functional groups were researched. SEM results revealed that the electrochemical oxidation got rid of surface contaminants generated during the production process. XPS analysis showed that the relative contents of oxygen and nitrogen increased by 446% and 202%, respectively, after the electrochemical oxidation. Carbon fiber surface chemistry was of paramount importance to the interfacial properties of CFRPs. The higher the carbon fiber surface activity, the better the interfacial bonding was, and an increase in the acidic‐group contents was responsible for a higher ILSS value. However, when the current density increased to 1.0 A/m2, the interfacial bonding between carbon fiber and the epoxy resin became weak which led to the decline in ILSS values. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
《先进技术聚合物》2018,29(8):2373-2380
Grafting nanoscale reinforcement onto macrolevel carbon fiber (CF) surface is an efficient approach to improve interfacial strength and properties of composites. In the research, 2 different polyhedral oligomeric silsesquioxanes (POSS)/CF hybrids have been prepared by a facile 2‐step method. Carbon fiber was grafted with aniline groups by aryl diazonium reaction using water as the reaction medium, and then separately functionalized with glycidyllsobutyl POSS (EP0418) or glycidyl POSS (EP0409) by the chemical bonding. Characterization of fiber surface structures before and after modification confirmed the covalent bonding nature between both kinds of POSS and CF. Atomic force microscopy images showed the uniform distributions of EP0418 or EP0409 modified on the fiber surface and the similar enhanced degree of surface roughness (89.3 and 88.7 nm). Dynamic contact angle tests showed that EP0409‐grafted CF (CF‐g‐EP0409) had lower contact angles and higher surface free energy than those of EP0418‐grafted CF (CF‐g‐EP0418). Interfacial strength and hydrothermal aging resistance of composites enhanced significantly after POSS modification, especially for CF‐g‐EP0409 composites. Interfacial reinforcing mechanisms of composites reinforced with 2 different POSS/CF hybrids have also been analyzed and compared.  相似文献   

17.
In this study, a series of reinforced polyimide (PI)/carbon fiber (CF) composite foams were fabricated through thermal foaming of polyester ammonium salt (PEAS) precursor powders. The PEAS precursor powders containing different contents of chopped CF were synthesized from benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride (BTDA) and 4,4′‐diaminodiphenyl ether (ODA). The effects of different CF loadings on foaming behavior of PEAS/CF composite precursor powders, final cellular morphology, and physical properties of PI composite foams were investigated. The results revealed that the chopped CF acted as nucleation agent in the foaming process. The dispersion of CF can be evaluated using digital microscope. It is interesting to find that the chopped CF were highly oriented along the direction of cell arrises. As a result, the mechanical properties of PI foams were significantly enhanced owing to the incorporation of chopped CF. Furthermore, the thermal stability of PI composite foams were also slightly improved owing to fine dispersion of CF. In addition, the PI/CF composite foam shows uniform cell size distribution and the best comprehensive physical properties as chopped CF loading at around 6 wt%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The interfacial adhesion strength between the fiber and the matrix greatly affects the properties of the carbon fiber (CF)–reinforced composite. The presence of surface functional groups on the fiber and changes in surface roughness were determined by X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy. The effect of surface modification of CF on the mechanical properties and tribological properties of the composites is enhanced. The performance has been significantly improved. SEM analysis showed that modification had a positive effect on the interface between fiber and matrix. In the paper, the method of CF modification and the treatment of enhanced high-density polyethylene have simple and effective characteristics, which can be widely used and have guiding significance for industrial production.  相似文献   

19.
In this work, ozone modification method and air‐oxidationwere used for the surface treatment of polyacrylonitrile(PAN)‐based carbon fiber. The surface characteristics of carbon fibers were characterized by XPS. The interfacial properties of carbon fiber‐reinforced (polyetheretherketone) PEEK (CF/PEEK) composites were investigated by means of the single fiber pull‐out tests. As a result, it was found that IFSS (interfacial shear strength) values of the composites with ozone‐treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that ozone treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibers on the tribological properties of CF/PEEKcomposites was comparativelyinvestigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PEEK matrix. Thus the wear resistance was significantly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Dang  Li  Nai  Xue-ying  Liu  Xin  Zhu  Dong-hai  Dong  Ya-ping  Li  Wu 《高分子科学》2017,35(9):1143-1155
The effects of maleic anhydride-grafted polypropylene(PP-g-MAH) and maleic anhydride-grafted polyolefin elastomer(POE-g-MAH) on interfacial adhesion properties of the polypropylene/magnesium oxysulfate whiskers(PP/MOSw) composites were investigated via mechanical, thermal, ATR-FTIR and rheological tests. Although significant increases in yield strength and Young's modulus were observed in PP-g-MAH treated composites, a sharp decline in these properties was observed in POE-g-MAH treated composites. ATR-FTIR results indicated that esterification occurred between the hydroxyl groups of MOSw and the carbonyls of anhydrides of both compatibilizers but POE-g-MAH was still incompatible with the PP matrix, as verified by the presence of shoulder peaks in DTG curves and numerous voids in SEM micrographs. On the other hand, PP-g-MAH was highly compatible with the PP matrix, as evidenced by the peaks in DTG curves and vague interfaces with wrapped melts on the surface of MOSw. Rheological behaviors also confirmed that introducing PP-g-MAH resulted in a transition from liquid-like to solid-like, which was attributed to the stronger interfacial adhesion between MOSw and the PP matrix. POE-g-MAH treated composites, in contrast to PP-g-MAH, maintained liquidlike rheological behaviors as typical molten polymers. There is likely a MOSw network formed in the PP/15PP-gMAH/15 MOSw composite as suggested by the significant deviation of G′ versus G″ plots and the two crossover frequencies observed in plots of tan? versus frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号