首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pikromycin (Pik) polyketide synthase (PKS) from Streptomyces venezuelae comprises four multifunctional polypeptides (PikAI, PikAII, PikAIII, and PikAIV). This PKS can generate 12- and 14-membered ring macrolactones (10-deoxymethynolide and narbonolide, respectively) through the activity of its terminal modules (PikAIII and PikAIV). We performed a series of experiments involving the functional replacement of PikAIV in mutant strains with homodimeric and heterodimeric PikAIV modules to investigate the details of macrolactone ring size determination. The results suggest a new and surprising mechanism by which the penultimate hexaketide chain elongation intermediate is transferred from PikAIII ACP5 to PikAIV ACP6 before release by the terminal thioesterase domain. Elucidation of this chain transfer mechanism provides important new details about alternative macrolactone ring size formation in modular PKSs and contributes to the potential for rational design of structural diversity by combinatorial biosynthesis.  相似文献   

2.
BACKGROUND: Polyketides are important compounds with antibiotic and anticancer activities. Several modular polyketide synthases (PKSs) contain a terminal thioesterase (TE) domain probably responsible for the release and concomitant cyclization of the fully processed polyketide chain. Because the TE domain influences qualitative aspects of product formation by engineered PKSs, its mechanism and specificity are of considerable interest. RESULTS: The TE domain of the 6-deoxyerythronolide B synthase was overexpressed in Escherichia coli. When tested against a set of N-acetyl cysteamine thioesters the TE domain did not act as a cyclase, but showed significant hydrolytic specificity towards substrates that mimic important features of its natural substrate. Also the overall rate of polyketide chain release was strongly enhanced by a covalent connection between the TE domain and the terminal PKS module (by as much as 100-fold compared with separate TE and PKS 'domains'). CONCLUSIONS: The inability of the TE domain alone to catalyze cyclization suggests that macrocycle formation results from the combined action of the TE domain and a PKS module. The chain-length and stereochemical preferences of the TE domain might be relevant in the design and engineered biosynthesis of certain novel polyketides. Our results also suggest that the TE domain might loop back to catalyze the release of polyketide chains from both terminal and pre-terminal modules, which may explain the ability of certain naturally occurring PKSs, such as the picromycin synthase, to generate both 12-membered and 14-membered macrolide antibiotics.  相似文献   

3.
Picromycin synthase (PICS) is a multifunctional, modular polyketide synthase (PKS) that catalyzes the conversion of methylmalonyl-CoA to narbonolide and 10-deoxymethynolide, the macrolide aglycone precursors of the antibiotics picromycin and methymycin, respectively. PICS modules 5 and 6 were each expressed in Escherichia coli with a thioesterase domain at the C-terminus to allow release of polyketide products. The substrate specificity of PICS modules 5+TE and 6+TE was investigated using N-acetylcysteamine thioesters of 2-methyl-3-hydroxy-pentanoic acid as diketide analogues of the natural polyketide chain elongation substrates. PICS module 5+TE could catalyze the chain elongation of only the syn diketide (2S,3R)-4, while PICS module 6+TE processed both syn diastereomers, (2S,3R)-4 and (2R,3S)-5, with a 2.5:1 preference in k(cat)/K(m) for 5 but did not turn over either of the two anti diketides. The observed substrate specificity patterns are in contrast to the 15-100:1 preference for 4 over 5 previously established for several modules of the closely related erythromycin PKS, 6-deoxyerythronolide B synthase (DEBS).  相似文献   

4.
Picromycin/methymycin synthase (PICS) is a modular polyketide synthase (PKS) that is responsible for the biosynthesis of both 10-deoxymethynolide (1) and narbonolide (2), the parent 12- and 14-membered aglycone precursors of the macrolide antibiotics methymycin and picromycin, respectively. PICS module 2 is a dehydratase (DH)-containing module that catalyzes the formation of the unsaturated triketide intermediate using malonyl-CoA as the chain extension substrate. Recombinant PICS module 2+TE, with the PICS thioesterase domain appended to the C-terminus to allow release of polyketide products, was expressed in Escherichia coli. Purified PICS module 2+TE converted malonyl-CoA and 4, the N-acetylcysteamine thioester of (2S,3R)-2-methyl-3-hydroxypentanoic acid, to a 1:2 mixture of the triketide acid (4S,5R)-4-methyl-5-hydroxy-2-heptenoic acid (5) and (3S,4S,5R)-3,5-dihydroxy-4-methyl-n-heptanoic acid-delta-lactone (10) with a combined kcat of 0.6 min(-1). The triketide lactone 10 is formed by thioesterase-catalyzed cyclization of the corresponding d-3-hydroxyacyl-SACP intermediate, a reaction which competes with dehydration catalyzed by the dehydratase domain. PICS module 2+TE showed a strong preference for the syn-diketide-SNAC 4, with a 20-fold greater kcat/K(m) than the anti-(2S,3S)-diketide-SNAC 14, and a 40-fold advantage over the syn-(2R,3S)-diketide-SNAC 13. PICS module 2(DH(0))+TE, with an inactivated DH domain, produced exclusively 10, while three PICS module 2(KR(0))+TE mutants, with inactivated KR domains, produced exclusively or predominantly the unreduced triketide ketolactone, (4S,5R)-3-oxo-4-methyl-5-hydroxy-n-heptanoic acid-delta-lactone (7). These studies establish for the first time the structure and stereochemistry of the intermediates of a polyketide chain elongation cycle catalyzed by a DH-containing module, while confirming the importance of key active site residues in both KR and DH domains.  相似文献   

5.
BACKGROUND: Combinatorial biosynthesis techniques using polyketide synthases (PKSs) in heterologous host organisms have enabled the production of macrolide aglycone libraries in which many positions of the macrolactone ring have been manipulated. However, the deoxysugar moieties of macrolides, absent in previous libraries, play a critical role in contributing to the antimicrobial properties exhibited by compounds such as erythromycin. Since the glycosidic components of polyketides dramatically alter their molecular binding properties, it would be useful to develop general expression hosts and vectors for synthesis and attachment of deoxysugars to expand the nature and size of such polyketide libraries. RESULTS: A set of nine deoxysugar biosynthetic and auxiliary genes from the picromycin/methymycin (pik) cluster was integrated in the chromosome of Streptomyces lividans to create a host which synthesizes TDP-D-desosamine. The pik desosaminyl transferase was also included so that when the strain was transformed with a previously constructed library of expression plasmids encoding genetically modified PKSs that produce different macrolactones, the resulting strains produced desosaminylated derivatives. Although conversion of the macrolactones was generally low, bioassays revealed that, unlike their aglycone precursors, these novel macrolides possessed antibiotic activity. CONCLUSIONS: Based on the structural differences among the compounds that were glycosylated it appears that the desosaminyl transferase from the pik gene cluster is quite tolerant of changes in the macrolactone substrate. Since others have demonstrated tolerance towards modifications in the sugar substituent, one can imagine employing this approach to alter both polyketide and deoxysugar pathways to produce 'unnatural' natural product libraries.  相似文献   

6.
BACKGROUND: Recently developed tools for the genetic manipulation of modular polyketide synthases (PKSs) have advanced the development of combinatorial biosynthesis technologies for drug discovery. Although many of the current techniques involve engineering individual domains or modules of the PKS, few experiments have addressed the ability to combine entire protein subunits from different modular PKSs to create hybrid polyketide pathways. We investigated this possibility by in vivo assembly of heterologous PKS complexes using natural and altered subunits from related macrolide PKSs. RESULTS: The pikAI and pikAII genes encoding subunits 1 and 2 (modules 1-4) of the picromycin PKS (PikPKS) and the eryAIII gene encoding subunit 3 (modules 5-6) of the 6-deoxyerythronolide B synthase (DEBS) were cloned in two compatible Streptomyces expression vectors. A strain of Streptomyces lividans co-transformed with the two vectors produced the hybrid macrolactone 3-hydroxynarbonolide. Co-expression of the same pik genes with the gene for subunit 3 of the oleandomycin PKS (OlePKS) was also successful. A series of hybrid polyketide pathways was then constructed by combining PikPKS subunits 1 and 2 with modified DEBS3 subunits containing engineered domains in modules 5 or 6. We also report the effect of junction location in a set of DEBS-PikPKS fusions. CONCLUSIONS: We show that natural as well as engineered protein subunits from heterologous modular PKSs can be functionally assembled to create hybrid polyketide pathways. This work represents a new strategy that complements earlier domain engineering approaches for combinatorial biosynthesis in which complete modules or PKS protein subunits, in addition to individual enzymatic domains, are used as building blocks for PKS engineering.  相似文献   

7.
The polyketide synthase-derived pikromycin thioesterase (Pik TE) is unique in its ability to catalyze the cyclization of 12- and 14-membered macrolactones. In this investigation, the total synthesis of the natural hexaketide chain elongation intermediate as its N-acetyl cysteamine (NAC) thioester has been achieved, and its reaction with Pik TE demonstrated the ability of Pik TE to catalyze its macrolactonization to the natural product 10-deoxymethynolide. A steady-state kinetic analysis of the hexaketide chain intermediate with Pik TE was done. A preliminary substrate specificity study with unnatural hexaketide analogues was accomplished, demonstrating the importance of total synthesis in obtaining access to advanced polyketide intermediates. The results show the sensitivity of Pik TE to minor substrate modifications, and illustrate the potential use of thioesterases as versatile macrolactonization catalysts.  相似文献   

8.
The unique ability of the pikromycin polyketide synthase (Pik PKS) to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes of polyketide synthesis, specifically, the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII and PikAIV and demonstrated the ability of these proteins to generate triketide lactone products using (14)C-methylmalonyl-CoA as the sole substrate. Monomodular PikAIII generates TKL (1) when reacted alone, and synthesizes TKL (2) upon reaction in combination with PikAIV. Product formation remains dependent on the enzymatic decarboxylation of methylmalonyl-CoA and transfer of the acyl chain within the enzyme rather than acylation by propionyl-CoA from spontaneous decarboxylation. We propose that synthesis of TKL (1) by PikAIII involves iterative assembly of the triketide chain within a PikAIII homodimer analogous to the nonmodular type I PKS systems.  相似文献   

9.
BACKGROUND: The polyene macrolide antibiotic nystatin produced by Streptomyces noursei ATCC 11455 is an important antifungal agent. The nystatin molecule contains a polyketide moiety represented by a 38-membered macrolactone ring to which the deoxysugar mycosamine is attached. Molecular cloning and characterization of the genes governing the nystatin biosynthesis is of considerable interest because this information can be used for the generation of new antifungal antibiotics. RESULTS: A DNA region of 123,580 base pairs from the S. noursei ATCC 11455 genome was isolated, sequenced and shown by gene disruption to be involved in nystatin biosynthesis. Analysis of the DNA sequence resulted in identification of six genes encoding a modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport and regulatory proteins. One of the PKS-encoding genes, nysC, was found to encode the largest (11,096 amino acids long) modular PKS described to date. Analysis of the deduced gene products allowed us to propose a model for the nystatin biosynthetic pathway in S. noursei. CONCLUSIONS: A complete set of genes responsible for the biosynthesis of the antifungal polyene antibiotic nystatin in S. noursei ATCC 11455 has been cloned and analyzed. This represents the first example of the complete DNA sequence analysis of a polyene antibiotic biosynthetic gene cluster. Manipulation of the genes identified within the cluster may potentially lead to the generation of novel polyketides and yield improvements in the production strains.  相似文献   

10.
Engineering polyketide synthases (PKS) to produce new metabolites requires an understanding of catalytic points of failure during substrate processing. Growing evidence indicates the thioesterase (TE) domain as a significant bottleneck within engineered PKS systems. We created a series of hybrid PKS modules bearing exchanged TE domains from heterologous pathways and challenged them with both native and non‐native polyketide substrates. Reactions pairing wildtype PKS modules with non‐native substrates primarily resulted in poor conversions to anticipated macrolactones. Likewise, product formation with native substrates and hybrid PKS modules bearing non‐cognate TE domains was severely reduced. In contrast, non‐native substrates were converted by most hybrid modules containing a substrate compatible TE, directly implicating this domain as the major catalytic gatekeeper and highlighting its value as a target for protein engineering to improve analog production in PKS pathways.  相似文献   

11.
The pikromycin polyketide synthase (PKS) is unique in its ability to generate both 12 and 14 membered ring macrolactones. As such, dissection of the molecular basis for controlling metabolic diversity in this system remains an important objective for understanding modular PKS function and expanding chemical diversity. Here, we describe a series of experiments designed to probe the importance of the protein-protein interaction that occurs between the final two monomodules, PikAIII (module 5) and PikAIV (module 6), for the production of the 12 membered ring macrolactone 10-deoxymethynolide. The results obtained from these in vitro studies demonstrate that PikAIII and PikAIV generate the 12 membered ring macrocycle most efficiently when engaged in their native protein-protein interaction. Accordingly, the data are consistent with PikAIV adopting an alternative conformation that enables the terminal thioesterase domain to directly off-load the PikAIII-bound hexaketide intermediate for macrocyclization.  相似文献   

12.
A flexible and convenient approach was developed for the synthesis of 10-deoxymethynolide (1) and narbonolide (2), which are aglycones of the methymycin and the pikromycin families of macrolide antibiotics. These lactones are produced by pikromycin polyketide synthase from Streptomyces venezuelae. Polyketide lactones, 10-deoxymethynolide and narbonolide, which contain 12- and 14-membered rings, respectively, were synthesized efficiently. These target lactones were retrosynthetically divided into three parts and assembled by using an asymmetric aldol reaction, the Yamaguchi esterification, and ring-closing metathesis. The ring-closing metathesis reaction catalyzed by the second-generation Grubbs catalyst is particularly efficient in preparing these macrocyclic polyketide lactones.  相似文献   

13.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of the chain extension process. We have overexpressed and purified PikAIII (module 5) and PikAIV (module 6) and assessed the ability of these proteins to generate tri- and tetraketide lactone products using N-acetylcysteamine-activated diketides and (14)C-methylmalonyl-CoA as substrates. Comparison of the stereochemical specificities for PikAIII and PikAIV and the reported values for the DEBS modules reveals significant differences between these systems.  相似文献   

14.
BACKGROUND: Modular polyketide synthases (PKSs) produce a wide range of medically significant compounds. In the case of the pikromycin PKS of Streptomyces venezuelae, four separate polypeptides (PikAI-PikAIV), comprising a total of one loading domain and six extension modules, generate the 14-membered ring macrolactone narbonolide. The polypeptide PikAIV contains a thioesterase (TE) domain and is responsible for catalyzing both the last elongation step with methylmalonyl CoA, and subsequent release of the final polyketide chain elongation intermediate from the PKS. Under certain growth conditions this polypeptide is synthesized from an alternative translational start site, giving rise to an N-terminal truncated form of PikAIV, containing only half of the ketosynthase (KS(6)) domain. The truncated form of PikAIV is unable to catalyze the final elongation step, but is able to cleave a polyketide chain from the preceding module on PikAIII (ACP(5)), giving rise to the 12-membered ring product 10-deoxymethynolide. RESULTS: S. venezuelae mutants expressing hybrid PikAIV polypeptides containing acyl carrier protein (ACP) and malonyl CoA specific acyltransferase (AT) domains from the rapamycin PKS were unable to catalyze production of 12- or 14-membered ring macrolactone products. Plasmid-based expression of a hybrid PikAIV containing the native KS(6) and TE domains, however, restored production of both narbonolide and 10-deoxymethynolide in the S. venezuelae AX912 mutant that generates a TE-deleted form of PikAIV. Use of alternative KS domains or deletion of the KS(6) domain within the hybrid PikAIV resulted in loss of both products. Plasmid-based expression of a TE domain of PikAIV as a separate polypeptide in the AX912 mutant resulted in greater than 50% restoration of 10-deoxymethynolide, but not in mutants expressing a hybrid PikAIV bearing an unnatural AT domain. Mutants expressing hybrid PikAIV polypeptides containing the natural AT(6) domains and different ACP domains efficiently produced polyketide products, but with a significantly higher 10-deoxymethynolide/narbonolide ratio than observed with native PikAIV. CONCLUSIONS: Dimerization of KS(6) modules allows in vivo formation of a PKS heterodimer using PikAIV polypeptides containing different AT and ACP domains. In such heterodimers, the TE domain and the AT(6) domain responsible for formation of the narbonolide product are located on different polypeptide chains. The AT(6) domain of PikAIV plays an important role in facilitating TE-catalyzed chain termination (10-deoxymethynolide formation) at the proceeding module in PikAIII. The pikromycin PKS can tolerate the presence of multiple forms (active and inactive) of PikAIV, and decreased efficiency of elongation by PikAIV can result in increased levels of 10-deoxymethynolide. These results provide new insight into functional molecular interactions and interdomain recognition in modular PKSs.  相似文献   

15.
BACKGROUND: The polyketide lactone, tylactone, is produced in Streptomyces fradiae by the TylG complex of five multifunctional proteins. As with other type I polyketide synthases, the enzyme catalysing the final elongation step (TylGV) possesses an integral thioesterase domain that is believed to be responsible for chain termination and ring closure to form tylactone, which is then glycosylated to yield tylosin. In common with other macrolide producers, S. fradiae also possesses an additional thioesterase gene (orf5) located within the cluster of antibiotic biosynthetic genes. The function of the Orf5 protein is addressed here. RESULTS: Disruption of orf5 reduced antibiotic accumulation in S. fradiae by at least 85%. Under such circumstances, the strain accumulated desmycosin (demycarosyl-tylosin) due to a downstream polar effect on the expression of orf6, which encodes a mycarose biosynthetic enzyme. High levels of desmycosin production were restored in the disrupted strain by complementation with intact orf5, or with the corresponding thioesterase gene, nbmB, from S. narbonensis, but not with DNA encoding the integral thioesterase domain of TylGV. CONCLUSIONS: Polyketide metabolism in S. fradiae is strongly dependent on the thioesterase activity encoded by orf5 (tylO). It is proposed that the TylG complex might operate with a significant error frequency and be prone to blockage with aberrant polyketides. A putative editing activity associated with TylO might be essential to unblock the polyketide synthase complex and thereby promote antibiotic accumulation.  相似文献   

16.
The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase, leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products.  相似文献   

17.
Tedanolide, which was isolated by Schmitz in 1984 from the marine sponge Tedania ignis, is a highly cytotoxic macrolide leading to strong growth inhibition of P338 tumor cells in bioassays. A unique structural feature of the known tedanolides is the primary hydroxyl group incorporated in the macrolactone. This unusual motif for macrolactones originated from PKS biosynthesis might arise through lactonizations others than those derived by the thioesterase reaction. First experimental data that support this hypothesis and reflect the inherent preference of PKS-induced macrolactonization were obtained during this synthesis. The inherent preference for the formation of a 14-membered macrocyclization is discussed together with the pivotal steps in the synthesis.  相似文献   

18.
The unique ability of the pikromycin (Pik) polyketide synthase to generate 12- and 14-membered ring macrolactones presents an opportunity to explore the fundamental processes underlying polyketide synthesis, specifically the mechanistic details of chain extension, keto group processing, acyl chain release, and macrocyclization. We have synthesized the natural pentaketide and hexaketide chain elongation intermediates as N-acetyl cysteamine (NAC) thioesters and have used them as substrates for in vitro conversions with engineered PikAIII+TE and in combination with native PikAIII (module 5) and PikAIV (module 6) multifunctional proteins. This investigation demonstrates directly the remarkable ability of these monomodules to catalyze one or two chain extension reactions, keto group processing steps, acyl-ACP release, and cyclization to generate 10-deoxymethynolide and narbonolide. The results reveal the enormous preference of Pik monomodules for their natural polyketide substrates and provide an important comparative analysis with previous studies using unnatural diketide NAC thioester substrates.  相似文献   

19.
The two essential structural components of macrolide antibiotics are the polyketide aglycone and the appended sugars. The aglycone formation is catalyzed by polyketide synthase (PKS), and glycosylation is catalyzed by an appropriate glycosyltransferase. Although it has been shown that glycosylation occurs after the cyclic aglycone is released from PKS, it is not known whether the acyl carrier protein (ACP)-bound linear polyketide chain can also be processed by the corresponding glycosyltransferase. To explore this possibility, the aglycone, 10-deoxymethynolide, which is the precursor of methymycin and neomethymycin, was chemically synthesized in the linear form as a N-acetylcysteamine (NAC) thioester. Subsequent incubation with TDP-d-desosamine in the presence of the dedicated glycosyltransferase, DesVII, and activator, DesVIII, produces a more polar product whose high-resolution mass is consistent with the anticipated glycosylated product. This study demonstrated for the first time that a macrolide glycosyltransferase can also recognize and process the linear precursor of its macrolactone substrate with a reduced but measurable activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号