首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Thin-layers of an intermediately acidic cation exchanger, cellulose phosphate (P-cellulose), have systematically been used to study the chromatographic behavior of 58 inorganic ions in both hydrochloric acid and acid ammonium thiocyanate media (0.01–2.0 mol dm−3). In both solvent systems, the R f values of many bivalent cations increase with increasing concentration of the acid and thiocyanate. Polyvalent metal ions including beryllium (II) and the others are strongly retained on the P-cellulose in the acid and thiocyanate systems tested. Palladium(II), mercury(II), ruthenium(III), rhenium(VII), arsenic(III), selenium(IV) and tellurium(IV) are not adsorbed on P-cellulose to any great extent. For silver(I), indium(III), gold(III), and platinum(IV), there are marked differences in the chromatographic behavior between hydrochloric acid and acid ammonium thiocyanate systems. Multicomponent separations conducted on P-cellulose plates with these eluents are presented.  相似文献   

2.
The regularities of silver anodic dissolution are studied by using the voltammetry (at the potential scan rates from 5 to 1000 mV/s) on the electrode, which was renewed immediately in the solution by cutting-off a thin surface metal layer, and quartz microgravimetry, for various concentrations of sodium thiosulfate (0.05–0.2 M). It is shown that, in the potential range from 0 to 0.4 V (normal hydrogen electrode), the polarization curves reflect the silver dissolution, whereas the contribution of oxidation of S2O32− ions is insignificant. At low potential scan rates, the process kinetics is of mixed nature. The kinetics and mechanism of anodic process are studied by using the measurements at high potential scan rates (100–200 mV/s) and the calculations of equilibrium composition of near-electrode layer. It is found that the exchange current in the electrolytes studied is 5 × 10−5 A/cm2, the transfer coefficient α is approximately 0.5, and both parameters are virtually independent of the concentration of S2O32− ions. The reaction order of silver dissolution with respect to the ligand $ \left. {\frac{{\partial logi}} {{\partial logc}}} \right|_E $ \left. {\frac{{\partial logi}} {{\partial logc}}} \right|_E is close to unity and is independent of potential. With regard for the literature data on the adsorption of thiosulfate ions on silver, this result is interpreted as the evidence for the involvement of one S2O32− ion from bulk solution, along with adsorbed ligands, in the elementary act of metal dissolution.  相似文献   

3.
T. Shimizu  S. Abe 《Chromatographia》1986,21(12):708-710
Summary The thin-layer chromatographic behavior of 49 inorganic ions on polyethyleneimine (PEI) cellulose has been investigated in hydrochloric acid media (0.01–1.0 mol dm−3). The sorption on the cellulose decreases with increasing acid concentration for most of the ions, but As(III), Ti(IV) and Te(VI) do not exhibit any Rf variation with the acid concentration. The Rf spectra of TI(I), Cd(II), Pb(II) and Zn(II) have a maximum. Ag(I), Bi(III), Nb(V), Ta(V), Mo(VI) and W(VI) are retained tightly on the layer, due to either insoluble salt formation or extensive hydrolysis. The extremely low Rf values of Hg(II), Pd(II), Au(III), Ru(III) and Pt(IV) are accounted for by stability of their chlorocomplexes. Re(VII) distributes chromatographically, having moderate Rf values between 0.3 and 0.6, so that the selective separation of Re(VII) from the other ions is feasible.  相似文献   

4.
Summary The adsorption behaviour of 48 metal ions on DEAE-cellulose layers has been investigated in aqueous hydrobromic and hydriodic acid media. RF values are given as a function of the hydrobromic and hydriodic acid concentration over the ranges 0.01–6 mol dm–3 and 0.01–3 mol dm–3, respectively, and are compared with those obtained with Avicel SF. RF spectra are comparatively simple in both media, reflecting the strong affinity of the bromide and iodide ions to the DEAE-cellulose phase. Pd, Pt, Re, Au and Hg are distributed chromatographically in either system, while most other metal ions exhibit rather extreme RF values of near unity or zero. Therefore, the selectivity of the systems is particularly high for Pd, Pt, Re, Au and Hg, providing the possibility of their excellent selective separations.  相似文献   

5.
Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)2) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)2 with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e and 4e reactions, occurring simultaneously, to quietly 4e reaction with the increasing chloride ion concentration.  相似文献   

6.
p-Toluenesulfonylamide was immobilized on silica gel and on nm-sized silicium dioxide (SiO2). Their adsorption efficiency toward metal ions was investigated by the batch equilibrium technique. Although silica gel and nm-SiO2 have the same composition (silicon and oxygen), the difference in their sizes and surface structures results in distinct chemical activity and selectivity. At pH 4, the adsorption capacity of modified silica gel adsorbent was found to be 4.9, 5.0, 33.2, and 12.6 mg g−1 for Cr(III), Cu(II), Pb(II) and Zn(II), respectively. However, the adsorption capacity of nm-SiO2 adsorbent toward Cr(III) was 26.7 mg g−1 under ultrasonic dispersing. The potential application of p-toluenesulfonylamide-modified silica gel for simultaneous preconcentration of trace chromium, copper, lead and zinc from two standard reference materials and two food samples was performed with satisfactory results. Correspondence: Xijun Chang, Department of Chemistry, Lanzhou University, Lanzhou 730000, P.R. China  相似文献   

7.
Summary The thin-layer chromatographic behavior of 49 inorganic ions on polyethyleneimine (PEI) cellulose, a weakly basic anion-exchanger, has been systematically studied in sulfuric acid and ammonium sulfate media (both 0.01–1.0 moldm−3). The sorption on the cellulose decreases with increasing concentration of the acid or sulfate for most of the ions and to a lesser extent for Hg(II), Bi(III), Th(IV), Nb(V), and U(VI). The Rf values of Pd(II), Ru(III), Au(III), Pt(IV), and Ta(V) are extremely low in both systems. Ba(II), Pb(II), Sb(III), Mo(VI), and W(VI) are also strongly retained on the layer. Oxy-anions such as As(III) and Se(VI) are not adsorbed on the cellulose to any great extent, but Re(VII) distributes on the plate with a Rf value of about 0.5. The characteristic retention on PEI-cellulose layer of several polyvalent ions, which form anionic sulfato complexes, can be observed in ammonium sulfate media. Possibilities for separations of analytical interest are also demonstrated in both systems.  相似文献   

8.
Adsorption of hafnium on manganese dioxide from nitric and perchloric acid solutions has been studied and optimized with respect to shaking time, concentration of acid, oxide and metal. Maximum adsorption has been noticed from 0.1 mol · dm–3 acid solutions in 20 minutes around 10–5 mol · dm–3 hafnium concentration. The adsorption of hafnium follows a Freundlich adsorption isotherm. Oxalate, thiosulfate, Na(I) and Al(III) from nitric acid and K(I) and Zn(II) from perchloric acid increase the adsorption, whereas all other anions and cations tested reduce the adsorption from both media Fe(III) and Sn(IV) significantly. Zn(II) and Co(II) show low adsorption affinity.  相似文献   

9.
A 5-formyl-3-(1′-carboxyphenylazo) salicylic acid-bonded silica gel (FCPASASG) chelating adsorbent was synthesized according to a very simple and rapid one step reaction between aminopropyl silica gel (APSG) and 5-formyl-3-(1′-carboxyphenylazo) salicylic acid (FCPASA) and its adsorption characteristics were studied in details. Nine trace metals viz.: Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) can be quantitatively adsorbed by the adsorbent from natural aqueous systems at pH 7.0–8.0. The adsorbed metal ions can be readily desorbed with 1 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, CM,eqm % (Recovery, R%) were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, logKd, are 3.7–6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS).The adsorption capacity of FCPASASG was 0.32–0.43 meq g−1. C and N elemental analyses of the adsorbent (FCPASASG) allowed us to calculate a surface converge of 0.82 mmol g−1. This value compares well with the best values reported for the azo compounds. The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance) and UV spectrometry, potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the FCPASASG adsorbent and the investigated metal ions is proposed to be due to reaction of those metal ions with the salicylic and/or the carboxyphenylazo chelation centers of the FCPASASG adsorbent. Nanogram concentrations (0.07–0.14 ng ml−1) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.  相似文献   

10.
The present study was undertaken to develop a novel adsorbent for heavy metal ions, and this paper presents the synthesis and characterization of a composite material-silica gel microspheres encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) with a core-shell structure. SG-PS-azo-SA was used to investigate the adsorption of Mn(II), Co(II), Ni(II), Fe(III), Hg(II), Zn(II), Cd(II), Cr(VI), Pd(II), Cu(II), Ag(I), and Au(III) from aqueous solutions. The results revealed that SG-PS-azo-SA has better adsorption capacity for Cu(II), Ag(I) and Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation with the maximum adsorption capacity for Cu(II), Ag(I), and Au(III) at 1.288 mmol g−1, 1.850 mmol g−1 and 1.613 mmol gt-1, respectively. Thus, silica gel encapsulated by salicyclic acid functionalized polystyrene (SG-PS-azo-SA) is favorable and useful for the removal of Cu(II), Ag(I) and Au(III) metal ions.  相似文献   

11.
The adsorption of trivalent chromium ions from aqueous solutions on the surface of carbon materials, namely, multiwall carbon nanotubes (NTs) and two samples of active carbon, is studied depending on pH and adsorbate concentration in the system. Isotherms of Cr(III) adsorption by the aforementioned materials are obtained. It is shown that chromium ions are predominantly bound by surface carboxyl groups. The adsorption of chromium ions reduces the electrokinetic potential of NTs and, at chromium concentrations C Cr(III) > 10–5 M, leads to the reversal of the surface charge. The adsorption value decreases in the series NT > Merck carbon > Norit carbon, in contrast to an increase in the adsorbate affinity to the adsorbent in this series, as determined from the slope of the initial section of the Langmuir isotherms. Small amounts of chromium ions sorbed at low concentrations in solution (C Cr(III) ≤ 10–5 M) are comparable with the concentration of hydrogen ions displaced from the surface, thus making it possible to suppose the existence of an ionexchange adsorption mechanism. As the concentration of Cr(III) increases, the equivalent displacement of H+ is violated, thereby indicating the development of other adsorption mechanisms (complexation).  相似文献   

12.
The electrode-separated piezoelectric sensor (ESPS), an improved setup of quartz crystal microbalance (QCM), has been employed to investigate the adsorption behavior of nonionic surfactant Triton X-100 at the hydrophilic quartz-solution interface in mineralized water medium in situ, which contained CaCl2 0.01 mol·L?1, MgCl2 0.01 mol·L?1, NaCl 0.35 mol·L?1. In a large scale of surfactant concentration, the effects of Ca2 , Mg2 and Na on the adsorption isotherm and kinetics are obviously different. In aque-ous solution containing NaCl only, adsorption of Triton X-100 on quartz-solution interface is promoted, both adsorption rate and adsorption amount increase. While in mineralized water medium, multivalent positive ions Ca2 and Mg2 are firmly adsorbed on quartz-solution interface, result in the increasing of adsorption rate and adsorption amount at low concentration of surfactant and the peculiar desorption of surfactant at high concentration of Triton X-100. The results got by solution depletion method are in good agreement with which obtained by ESPS. The "bridge" and "separate" effect of inorganic positive ions on the adsorption and desorption mechanism of Triton X-100 at the quartz- solution interface is discussed with molecular dynamics simulations (MD), flame atomic absorption spectrometry (FAAS) and atomic force microscopy (AFM) methods.  相似文献   

13.
Summary The thin-layer chromatographic behavior of 58 metals on an intermediately acidic cation exchanger, cellulose phosphate (P-cellulose), has been surveyed systematically in sulfuric acid and ammonium sulfate media (0.01–2.0 M). The Rf values for many bivalent and univalent metal ions on P-cellulose plates increase with increasing concentration of sulfate ions. Howerver, manganese (II), arsenic (III) and selenium (IV) are not adsorbed on the cellulose to any great extent. Beryllium (II) and other metals, which form either strong phosphate complexes or insoluble sulfate precipitates, are strongly retained on the P-cellulose. The thin-layer chromatographic separations of various metal ions of analytical interest were accomplished to demonstrate the use of Rf measurements for predicting separations in the acid and the sulfate media.  相似文献   

14.
In this paper, zeolitic imidazolate framework-8 modified by the ethanediamine (NH2-ZIF-8) was employed for adsorbing Au (III) and Ag(I) from aqueous solutions. The adsorption capacities of NH2-ZIF-8 towards Au (III) and Ag(I) were found to be significantly affected by the pH values of the solution. The adsorption kinetics studies show that NH2-ZIF-8 presents a fast adsorption property towards metals, attaining 93% of adsorption equilibrium uptake for Au (III) within the first 30 min. This phenomenon can be ascribed to the coordination interaction between the amino group and Au (III). The thermodynamic data suggest that the adsorption of NH2-ZIF-8 towards Au (III) is endothermic process, while that for Ag(I) is exothermic. The maximum adsorption capacities of NH2-ZIF-8 toward Au (III) and Ag(I) can be achieved to 357 mg·g−1 and 222.25 mg·g−1, respectively. The metal ions interference results show that Cu (II) and Ni (II) hardly have no interference on Au (III) adsorption in e-waste containing 1500 mg·l−1 Cu (II),100 mg·l−1 Ni (II) and 10 mg·l−1 Au (III); while for Ag(I), Cd (II) and Zn (II) have little interference on Ag(I) adsorption in the hybrid solutions containing Ag(I), Ni (II), Cd (II) and Zn (II) with equal concentration (50 mg·l−1), but Ni (II) interference most. The XPS study shows that partial Au (III) was reduced to Au(I), and that Ag(I) was completely reduced to Ag(0) during the adsorption process. The abundant of active sites of NH2-ZIF-8 containing C=N, N-H, and Zn-OH groups play a key role in the adsorption of Au (III) and Ag(I). In addition, electrostatic interaction can be responsible for the adsorption of Au (III) by NH2-ZIF-8. The regeneration experiments results show that the adsorption capacities of NH2-ZIF-8 towards Au (III) and Ag(I) can maintain after three cycles. This work provides a reliable method to improve the adsorption kinetics for metal ions.  相似文献   

15.
Notions about charge transfer during adsorption of anions on metals in aqueous solutions are rendered. The role played by the electron tunneling on macrocontacts during the signal formation in the method of contact electroresistance (CER) is considered. It is shown that CER depends on the metal surface coverage by adsorbed species and their effective charge. Bell-like CER vs.E curves are obtained for copper, silver, and gold in solutions containing halide ions. Potentials of maximums in the curves,E max, correspond to the charge transfer onset and depend on the nature of the metal and anion and on the anion concentration. AtE belowE max, halides adsorb in the form of ions, involving no substantial charge transfer. At potentials exceedingE max by 0.1 to 0.2 V, practically complete charge transfer occurs. With changing anion nature,E max for a given metal rises in the series I- < Br- ≪ Cl-. For a given anion (say, I-),E max increases with the metal nature in the series Cu ≤Ag ≪ Au. The link between the charge transfer during adsorption of anions and the surface reconstruction in single-crystal electrodes is discussed.  相似文献   

16.
Zhang L  Guo X  Li H  Yuan Z  Liu X  Xu T 《Talanta》2011,85(5):2463-2469
A simple and rapid analytical method for the separation of trace amounts of gallium and germanium from aqueous solution by solid-phase extraction with nano-particles was developed. It was found that only Ga(III) could be quantitatively retained on nano-SiO2 in the pH range of 3-4 and 8-12 while Ge(IV) was not adsorbed, but both Ga(III) and Ge(IV) ions could be adsorbed quantitatively on nano-TiO2 within the pH range of 4-11. These two ions adsorbed by nano-particles could be desorbed quantitatively. Effects of acidity, concentration of elution solution and interfering ions on the recovery of the analytes were systematically investigated. The sorption data could be well interpreted by the Langmuir model. Based on the Langmuir model equation, the monolayer adsorption capacity of nano-SiO2/nano-TiO2 was calculated to be 4.26 mg g−1/19.68 mg g−1 for Ga(III)/Ge(IV). Moreover, thermodynamic functions, the change of free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) of the adsorption reaction were estimated for each metal ion. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and the adsorption process for both metal ions followed well pseudo-second-order kinetics. Finally, the proposed method was applied to the determination of trace Ga(III) and Ge(IV) in some water samples using loaded nano-particles columns, and it is found that the recoveries of Ga(III) and Ge(IV) were obtained to be in the range of 96.4-105.0%. And the method was validated with certified reference material (GBW07311, GBW 07406) and the values obtained for Ga(III) and Ge(IV) were in good agreement with the certified values.  相似文献   

17.
Summary The Co(II), Ni(II), Fe(III) and V(IV) complexes of tetraphenylporphine (TPP) can be eluted at short retention times from a LiChrosorb RP-18 column with pure ethanol. However, both Mn(III) and Co(III) complexes of metal TPP chloride type are so strongly retained on the column that they cannot be eluted. While the retention of other metal teraphenylporphine complexes was not affected, that of the metal(III) complexes of the TPP chloride type especially MnTPPCl and CoTPPCl, decreases dramatically with an increase in the concentration of NH4Cl added into the mobile phase; a linear relationship between logk' and log[NH4Cl], with the slope of about–1, has been observed for these two metal(III) complexes in the NH4Cl concentration range from 2.5×10–4 to 1.3×10–2 mol/l. Thus, the specific control of the retention of the metal(III) complexes is enabled by conditioning the NH4Cl content of the mobile phase, and the chromatographic separation is demonstrated.  相似文献   

18.
Modified Sorrel’s cement was prepared by the addition of ferric chloride. The modified cement (MF5) was analyzed and characterized by different methods. Adsorption of Gd(III) and U(VI) ions in carbonate solution has been studied separately as a function of pH, contact time, adsorbent weight, carbonate concentration, concentration of Gd(III) and U(VI) and temperature. From equilibrium data obtained, the values of Δ H, Δ S and Δ G were found to equal −30.9 kJ ⋅ mol−1, −85.4 J ⋅ mol−1 ⋅,K−1, and −5.4 KJ ⋅ mol−1, respectively, for Gd(III) and 18.9 kJ ⋅ mol−1, 67.8 J ⋅ mol−1 K−1 and −1.3 KJ ⋅ mol−1, respectively, for U(VI). The equilibrium data obtained have been found to fit both Langmuir and Freundlich adsorption isotherms. The batch kinetic of Gd(III) and U(VI) on modified Sorrel’s cement (MF5) with the thermodynamic parameters from carbonate solution were studied to explain the mechanistic aspects of the adsorption process. Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the adsorption process. Various parameters such as effective diffusion coefficient and activation energy of activation were evaluated. The adsorption of Gd(III) and U(VI) on the MF5 adsorbent follows first-order reversible kinetics. The forward and backward constants for adsorption, k 1and k 2 have been calculated at different temperatures between 10 and 60C. Form kinetic study, the values of Δ H * and Δ S * were calculated for Gd(III) and U(VI) at 25C. It is found that Δ H * equals −14.8 kJmol−1 and 7.2 kJmol−1 for Gd(III) and U(VI), respectively, while Δ S * were found equal −95.7 Jmol−1K−1 and −70.5 Jmol−1K−1 for Gd(III) and U(VI), respectively. The study showed that the pore diffusion is the rate limiting for Gd(III) and (VI).  相似文献   

19.
A device has been developed for the measurement of copper(II) ions (Cu2+) in aqueous medium. The device reported here is an electrochemical transistor which consists of two platinum electrodes separated by 100 μm spacing and bridged with an anodically grown film of polycarbazole. Polycarbazole film (undoped form) is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu(II) ions. The change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5 × 10−6 M Cu(II) ions and reaches a saturation region beyond 10−4 M Cu(II) ion concentrations. In the above concentration range, the device response [I D vs. log Cu(II) ion concentration] is linear. The selectivity of the device for other metal ions such as Cu(I), Ni(II), Co(II), Fe(II), Fe(III), Zn(II) and Pb(II) is also studied. Received: 6 April 1999 / Accepted: 20 August 1999  相似文献   

20.
In this study, biosorption of cobalt(II), chromium(III), cadmium(II), and lead(II) ions from aqueous solution was studied using the algae nonliving biomass (Neochloris pseudoalveolaris, Np) as natural and biological sorbents. The effect of pH, contact time, temperature, and metal concentration on the adsorption capacity of metal ions was investigated. The maximum adsorption capacities for Co(II), Cr(II), Cd(II), and Pb(II) were found to be 20.1, 9.73, 51.4 and 96.2 mg/g at the optimum conditions, respectively. The experiments showed that when pH increased, an increase in the adsorption capacity of the biomass was observed too. The kinetic results of adsorption obeyed a pseudo second-order model. Freundlich and Langmuir isotherm models were applied to experimental equilibrium data of metal ions adsorption and the value of R L for Pb(II), Cb,(II), Co(II), and Cr(III) was found to be 0.376, 0271, 0872, and 096, respectively. The thermodynamic parameters related to the adsorption process such as E a , ΔG 0, ΔH 0, and ΔS 0 were calculated. ΔH 0 values (positive) showed that the adsorption mechanism was endothermic. Weber-Morris and Urano-Tachikawa diffusion models were also applied to experimental equilibrium data. The algae biomass was effectively used as a sorbent for the removal of metal ions from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号