首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemoenzymatic synthesis of 13C-labeled sialic acid (NeuAc) and 3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (KDN) as useful molecular probes for studying the conformation of sialyl or KDN oligosaccharides attached to proteins was performed by using [6-13C]-ManNAc, [6-13C]-Man and [3-13C]-pyruvic acid sodium salt. In the synthesis of the compounds, 5,6-anhydro intermediates were found to easily provide not only 6-13C-labeled but also 5-, and 6-modified NeuAc and KDN analogs. Furthermore, it was demonstrated that identical results are obtained by NMR for both [3,9-13C]-NeuAc and 1:1 mixtures of [3-13C]- and [9-13C]-NeuAc.  相似文献   

2.
The development of a general method for the purification and quantitative glycomic analysis of human plasma samples to characterize global glycosylation changes shall be presented. The method involves multiple steps, including the depletion of plasma via multi-affinity chromatography to remove high abundant proteins, the enrichment of the lower abundant glycoproteins via multi-lectin affinity chromatography, the isotopic derivatization of released glycans, and quantitative analysis by MALDI-TOF MS. Isotopic derivatization of glycans is accomplished using the well-established chemistry of reductive amination to derivatize glycans with either a light analog (12C anthranilic acid) or a heavy analog (13C7 anthranilic acid), which allows for the direct comparison of the alternately labeled glycans by MALDI-TOF MS. The method displays a tenfold linear dynamic range for both neutral and sialylated glycans with sub-picomolar sensitivity. Additionally, by using anthranilic acid, a very sensitive fluorophore, as the derivatization reagent, the glycans can be analyzed by chromatography with fluorescence detection. The utility of this methodology is highlighted by the many diseases and disorders that are known to either show or be the result of changes in glycosylation. A method that provides a generic approach for sample preparation and quantitative data will help to further advance the field of glycomics.  相似文献   

3.
NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for each of the others. Sequence-specific assignments were determined for the backbone (15)N signals from nine of the 22 residues and ambiguous assignments for five of the others.  相似文献   

4.
A novel method is proposed for the analysis of protein NOEs in solution. In this approach, chemically synthesized precursor compounds for the amino acids valine, leucine, and isoleucine are used for amino acid specific labeling of these hydrophobic residues. The methodology is based on a novel synthetic route to 12C,1H,2H Val, Leu, and Ile side chains selectively labeled with 13CH3 only at the terminal methyl group. In an otherwise 12C,1H labeled protein, discrimination between protons bound to 12C and 13C (or 15N) can be achieved using standard isotope-editing NMR pulse schemes. This strategy significantly relieves problems with spectral overlap through selective observation of interresidue methyl NOEs and will thus be a powerful extension of existing biomolecular NMR methodology.  相似文献   

5.
Pseudaminic acid (Pse) is a significant prokaryotic monosaccharide found in important Gram-negative and Gram-positive bacteria. This unique sugar serves as a component of cell-surface-associated glycans or glycoproteins and is associated with their virulence. We report the synthesis of azidoacetamido-functionalized Pse derivatives as part of a search for Pse-derived metabolic labeling reagents. The synthesis was initiated with d -glucose (Glc), which served as a cost-effective chiral pool starting material. Key synthetic steps involve the conversion of C1 of Glc into the terminal methyl group of Pse, and inverting deoxyaminations at C3 and C5 of Glc followed by backbone elongation with a three-carbon unit using the Barbier reaction. Metabolic labeling experiments revealed that, of the four Pse derivatives, ester-protected C5 azidoacetamido-Pse successfully labeled cells of Pse-expressing Gram-positive and Gram-negative strains. No labeling was observed in cells of non-Pse-expressing strains. The ester-protected and C5 azidoacetamido-functionalized Pse is thus a useful reagent for the identification of bacteria expressing this unique virulence-associated nonulosonic acid.  相似文献   

6.
A novel approach for detection of ligand binding to a protein in solid samples is described. Hydrated precipitates of the anti-apoptotic protein Bcl-xL show well-resolved (13)C-(13)C 2D solid-state NMR spectra that allow site-specific assignment of resonances for many residues in uniformly (13)C-enriched samples. Binding of a small peptide or drug-like organic molecule leads to changes in the chemical shift of resonances from multiple residues in the protein that can be monitored to characterize binding. Differential chemical shifts can be used to distinguish between direct protein-ligand contacts and small conformational changes of the protein induced by ligand binding. The agreement with prior solution-state NMR results indicates that the binding pocket in solid and liquid samples is similar for this protein. Advantages of different labeling schemes involving selective (13)C enrichment of methyl groups of Ala, Val, Leu, and Ile (Cdelta1) for characterizing protein-ligand interactions are also discussed. It is demonstrated that high-resolution solid-state NMR spectroscopy on uniformly or extensively (13)C-enriched samples has the potential to screen proteins of moderate size ( approximately 20 kDa) for ligand binding as hydrated solids. The results presented here suggest the possibility of using solid-state NMR to study ligand binding in proteins not amenable to solution NMR.  相似文献   

7.
Sialylated glycans are found at elevated levels in many types of cancer and have been implicated in disease progression. However, the specific glycoproteins that contribute to the cancer cell‐surface sialylation are not well characterized, specifically in bona fide human disease tissue. Metabolic and bioorthogonal labeling methods have previously enabled the enrichment and identification of sialoglycoproteins from cultured cells and model organisms. Herein, we report the first application of this glycoproteomic platform to human tissues cultured ex vivo. Both normal and cancerous prostate tissues were sliced and cultured in the presence of the azide‐functionalized sialic acid biosynthetic precursor Ac4ManNAz. The compound was metabolized to the azidosialic acid and incorporated into cell surface and secreted sialoglycoproteins. Chemical biotinylation followed by enrichment and mass spectrometry led to the identification of glycoproteins that were found at elevated levels or uniquely in cancerous prostate tissue. This work therefore extends the use of bioorthogonal labeling strategies to problems of clinical relevance.  相似文献   

8.
We present a new method that integrates selective biosynthetic labeling and solid-state NMR detection to identify in situ important protein cross-links in plant cell walls. We have labeled soybean cells by growth in media containing l-[ring-d(4)]tyrosine and l-[ring-4-(13)C]tyrosine, compared whole-cell and cell-wall (13)C CPMAS spectra, and examined intact cell walls using (13)C{(2)H} rotational echo double-resonance (REDOR) solid-state NMR. The proximity of (13)C and (2)H labels shows that 25% of the tyrosines in soybean cell walls are part of isodityrosine cross-links between protein chains. We also used (15)N{(13)C} REDOR of intact cell walls labeled by l-[ε-(15)N,6-(13)C]lysine and depleted in natural-abundance (15)N to establish that the side chains of lysine are not significantly involved in covalent cross-links to proteins or sugars.  相似文献   

9.
Sialic‐acid‐binding, immunoglobulin‐type lectin‐7 (Siglec‐7) is present on the surface of natural killer cells. Siglec‐7 shows preference for disialylated glycans, including α(2,8)‐α(2,3)‐disialic acids or internally branched α(2,6)‐NeuAc, such as disialosylglobopentaose (DSGb5). Herein, DSGb5 was synthesized by a one‐pot multiple enzyme method from Gb5 by α2,3‐sialylation (with PmST1) followed by α2,6‐sialylation (with Psp2,6ST) in 23 % overall yield. DSGb5 was also chemoenzymatically synthesized. The protection of the nonreducing‐end galactose of Gb5 as 3,4‐O‐acetonide, 3,4‐O‐benzylidene, and 4,6‐O‐benzylidene derivatives provided DSGb5 in overall yields of 26 %, 12 %, and 19 %, respectively. Gb3, Gb4, and Gb5 were enzymatically sialylated to afford a range of globo‐glycans. Surprisingly, DSGb5 shows a low affinity for Siglec‐7 in a glycan microarray binding affinity assay. Among the synthesized globo‐series glycans, α6α3DSGb4 shows the highest binding affinity for Siglec‐7.  相似文献   

10.
In order to develop triple-resonance solid-state NMR spectroscopy of membrane proteins, we have implemented several different (13)C labeling schemes with the purpose of overcoming the interfering effects of (13)C-(13)C dipole-dipole couplings in stationary samples. The membrane-bound form of the major coat protein of the filamentous bacteriophage Pf1 was used as an example of a well-characterized helical membrane protein. Aligned protein samples randomly enriched to 35% (13)C in all sites and metabolically labeled from bacterial growth on media containing [2-(13)C]-glycerol or [1,3-(13)C]-glycerol enables direct (13)C detection in solid-state NMR experiments without the need for homonuclear (13)C-(13)C dipole-dipole decoupling. The (13)C-detected NMR spectra of Pf1 coat protein show a substantial increase in sensitivity compared to the equivalent (15)N-detected spectra. The isotopic labeling pattern was analyzed for [2-(13)C]-glycerol and [1,3-(13)C]-glycerol as metabolic precursors by solution-state NMR of micelle samples. Polarization inversion spin exchange at the magic angle (PISEMA) and other solid-state NMR experiments work well on 35% random fractionally and metabolically tailored (13)C-labeled samples, in contrast to their failure with conventional 100% uniformly (13)C-labeled samples.  相似文献   

11.
The cell membrane is composed of a network of glycoconjugates including glycoproteins and glycolipids that presents a dense matrix of carbohydrates playing critical roles in many biological processes. Lectin-based technology has been widely used to characterize glycoconjugates in tissues and cell lines. However, their specificity toward their putative glycan ligand and sensitivity in situ have been technologically difficult to study. Additionally, because they recognize primarily glycans, the underlying glycoprotein targets are generally not known. In this study, we employed lectin proximity oxidative labeling (Lectin PROXL) to identify cell surface glycoproteins that contain glycans that are recognized by lectins. Commonly used lectins were modified with a probe to produce hydroxide radicals in the proximity of the labeled lectins. The underlying polypeptides of the glycoproteins recognized by the lectins are oxidized and identified by the standard proteomic workflow. As a result, approximately 70% of identified glycoproteins were oxidized in situ by all the lectin probes, while only 5% of the total proteins were oxidized. The correlation between the glycosites and oxidation sites demonstrated the effectiveness of the lectin probes. The specificity and sensitivity of each lectin were determined using site-specific glycan information obtained through glycomic and glycoproteomic analyses. Notably, the sialic acid-binding lectins and the fucose-binding lectins had higher specificity and sensitivity compared to other lectins, while those that were specific to high mannose glycans have poor sensitivity and specificity. This method offers an unprecedented view of the interactions of lectins with specific glycoproteins as well as protein networks that are mediated by specific glycan types on cell membranes.

A lectin proximity oxidative labeling (Lectin PROXL) tool was developed to identify cell surface glycoproteins that contain glycans that are recognized by lectins.  相似文献   

12.
In this study, a ZIC-HILIC-MS methodology for the analysis of N-glycan isomers was optimized to obtain greater detection sensitivity and thus identify more glycan structures in hAGP. In a second step, this method was combined with glycan reductive isotope labelling (GRIL) through [12C6]/[13C6]-aniline and exoglycosidase digestion to characterize the different glycan isomers. The GRIL method allows the peak areas resulting from two different labelled samples to be compared, since neither retention time shifts nor variations in the ionization of glycans between these samples are obtained. First, sialic acid linkage assignations were performed for most hAGP glycan isomers with α2-3 sialidase digestion. Bi-, tri- and tetraantennary glycan isomers with different terminal sialic acid linkages to galactose (α2-3 or α2-6) were assigned, and the potential of this technique for the structural characterization of isobaric isomers was therefore demonstrated. Furthermore, fucose linkage isomers of hAGP glycans were also characterized using this isotope-labelling approach in combination with α1-3,4 fucosidase and β1-4 galactosidase digestion. α1-3 antennary fucoses and α1-6 core fucosylation were detected in hAGP fucosylated glycans. These established methodologies can be extremely useful for patho-glycomic studies to characterize glycoproteins of biomedical interest and find novel glycan isomers that could be used as biomarkers in cancer research.  相似文献   

13.
Reductive 13C-methylation of proteins has been used as an isotope labeling strategy to study protein structure, function, and dynamics by nuclear magnetic resonance (NMR) spectroscopy. However, assigning the resulting 13C-dimethylamine peaks in a 1H-13C NMR spectrum has proved to be difficult, but it is important to expand the scope of the method. The assignment strategy presented here utilizes mass spectrometry (MS) for sequence identification and varying 13C/12C isotope ratios to correlate with NMR data. The site-specific reactivity of the lysines and N-terminal amine of a protein is exploited to produce a sample with varying 13C/12C ratios at each dimethylamine. MS and NMR are used to quantitate and correlate these ratios in order to assign peaks in the 1H-13C NMR spectrum. Hen egg white lysozyme was used as a model protein to demonstrate this assignment strategy.  相似文献   

14.
The potential of using sole respirometric CO2 labeling measurement for 13C metabolic flux analysis was investigated by metabolic simulations. For this purpose a model was created, considering all CO2 forming and consuming reactions in the central catabolic and anabolic pathways. To facilitate the interpretation of the simulation results, the underlying metabolic network was parameterized by physiologically meaningful flux parameters such as flux partitioning ratios at metabolic branch points and reaction reversibilities. For real case flux scenarios of the industrial amino acid producer Corynebacterium glutamicum and different commercially available (13)C-labeled tracer substrates, observability and output sensitivity towards key flux parameters was investigated. Metabolic net fluxes in the central metabolism, involving, e.g. glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, anaplerotic carboxylation, and glyoxylate pathway were found to be determinable by the respirometric approach using a combination of [1-13C] and [6-13C] glucose in two parallel studies. The reversibilities of bidirectional reactions influence the isotopic labeling of CO2 only to a negligible degree. On one hand, they therefore cannot be determined. On the other hand, their precise values are not required for the quantification of net fluxes. Computer-aided optimal experimental design was carried out to predict the quality of the information from the respirometric tracer experiments and identify suitable tracer substrates. A combination of [1-13C] and [6-13C] glucose in two parallel studies was found to yield a similar quality of information as compared to an approach with mass spectrometric labeling analysis of secreted products. The quality of information can be further increased by additional studies with [1,2-13C2] or [1,6-13C2] glucose. Respirometric tracer studies with sole labeling analysis of CO2 are therefore promising for 13C metabolic flux analysis.  相似文献   

15.
The potential of using sole respirometric CO2 labeling measurement for 13C metabolic flux analysis was investigated by metabolic simulations. For this purpose a model was created, considering all CO2 forming and consuming reactions in the central catabolic and anabolic pathways. To facilitate the interpretation of the simulation results, the underlying metabolic network was parameterized by physiologically meaningful flux parameters such as flux partitioning ratios at metabolic branch points and reaction reversibilities. For real case flux scenarios of the industrial amino acid producer Corynebacterium glutamicum and different commercially available (13)C-labeled tracer substrates, observability and output sensitivity towards key flux parameters was investigated. Metabolic net fluxes in the central metabolism, involving, e.g. glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, anaplerotic carboxylation, and glyoxylate pathway were found to be determinable by the respirometric approach using a combination of [1-13C] and [6-13C] glucose in two parallel studies. The reversibilities of bidirectional reactions influence the isotopic labeling of CO2 only to a negligible degree. On one hand, they therefore cannot be determined. On the other hand, their precise values are not required for the quantification of net fluxes. Computer-aided optimal experimental design was carried out to predict the quality of the information from the respirometric tracer experiments and identify suitable tracer substrates. A combination of [1-13C] and [6-13C] glucose in two parallel studies was found to yield a similar quality of information as compared to an approach with mass spectrometric labeling analysis of secreted products. The quality of information can be further increased by additional studies with [1,2-13C2] or [1,6-13C2] glucose. Respirometric tracer studies with sole labeling analysis of CO2 are therefore promising for 13C metabolic flux analysis.  相似文献   

16.
CE is a high‐resolution separation technique broadly used in the biotechnology industry for carbohydrate analysis. The standard sample preparation protocol for CE analysis of glycans released from glycoproteins generally requires derivatization times of overnight at 37°C, using ≥100 fold excess of fluorophore reagent, 8‐aminopyrene‐1,3,6‐trisulfonic‐acid, if the sample is unknown, or it is a regulated biotherapeutic product, possibly containing terminal sialic acid(s). In this paper, we report on significant improvements for the standard CE sample preparation method of glycan analysis. By replacing the conventionally used acetic acid catalyst with citric acid, as low as 1:10 glycan to fluorophore molar ratio (versus the typical 1:≥100 ratio) maintained the >95% derivatization yield at 55°C with only 50 min reaction time. Terminal sialic acid loss was negligible at 55°C during the derivatization process, and indicating that the kinetics of labeling at 55°C was faster than the loss of sialic acid from the glycan. The reduced relative level of 8‐aminopyrene‐1,3,6‐trisulfonic‐acid simplified the removal of excess reagent, important in both CE‐LIF (electrokinetic injection bias) and CE‐MS (ion suppression). Coupling CE‐ ESI‐MS confirmed that the individual peaks separated by CE corresponded to single glycans and increased the confidence of structural assignment based on glucose unit values.  相似文献   

17.
New NMR experiments are presented for the assignment of methyl (13)C and (1)H chemical shifts from Ile, Leu, and Val residues in high molecular weight proteins. The first class of pulse schemes transfers magnetization from the methyl group to the backbone amide spins for detection, while the second more sensitive class uses an "out-and-back" transfer scheme in which side-chain carbons or backbone carbonyls are correlated with methyl (13)C and (1)H spins. Both groups of experiments benefit from a new isotopic labeling scheme for protonation of Leu and Val methyl groups in large deuterated proteins. The approach makes use of alpha-ketoisovalerate that is (13)C-labeled and protonated in one of its methyl groups ((13)CH(3)), while the other methyl is (12)CD(3). The use of this biosynthetic precursor leads to production of Leu and Val residues that are (13)CH(3)-labeled at only a single methyl position. Although this labeling pattern effectively reduces by 2-fold the concentration of Leu and Val methyls in NMR samples, it ensures linearity of Val and Leu side-chain (13)C spin-systems, leading to higher sensitivity and, for certain classes of experiments, substantial simplification of NMR spectra. Very near complete assignments of the 276 Ile (delta 1 only), Leu, and Val methyl groups in the single-chain 723-residue enzyme malate synthase G (MSG, molecular tumbling time 37 +/- 2 ns at 37 degrees C) have been obtained using the proposed isotopic labeling strategy in combination with the new NMR experiments.  相似文献   

18.
Fluorophore-assisted carbohydrate electrophoresis (FACE) is a fast and efficient analytical method which is now widely used in glycobiology for the separation and quantification of free or glycoprotein-released oligosaccharides. However, since identification by FACE of N-glycan structures is only based on their electrophoretic mobility after labelling with 8-aminonaphthalene-1,3, 6-trisulfonic acid (ANTS), co-migration of derived glycans on gel could occur which may result in erroneous structural assignments. As a consequence, a protocol was developed for the fast and efficient matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometric analysis of ANTS-labelled N-glycans. N-Glycans were isolated from plant and mammalian glycoproteins, reductively aminated with the charged fluorophore 8-aminonaphthalene-1, 3, 6-trisulfonic acid (ANTS) and separated using high resolution polyacrylamide gel electrophoresis. The ANTS-labelled glycans were eluted from FACE gel slices and then analysed by MALDI-TOF mass spectrometry in negative ion mode. Using 3-aminoquinoline containing 2.5 mM citrate NH(4)(+) as matrix, neutral N-linked N-glycans, as well as labelled sialylated oligosaccharides, were found to be easily detected in the 2-10 picomole range giving rise to ?M - H(-) ions.  相似文献   

19.
Dalpathado DS  Desaire H 《The Analyst》2008,133(6):731-738
Glycosylation is one of the most important post-translational modifications found in nature. Identifying and characterizing glycans is an important step in correlating glycosylation structure to the glycan's function, both in normal glycoproteins and those that are modified in a disease state. Glycans on a protein can be characterized by a variety of methods. This review focuses on the mass spectral analysis of glycopeptides, after subjecting the glycoprotein to proteolysis. This analytical approach is useful in characterizing glycan heterogeneity and correlating glycan compositions to their attachment sites on the protein. The information obtained from this approach can serve as the foundation for understanding how glycan compositions affect protein function, in both normal and aberrant glycoproteins.  相似文献   

20.
Fluorescently labeled carbohydrates released from glycoproteins were separated using a commercially available microfluidic chip electrophoresis system. While the instrumentation was primarily designed for DNA analysis it was found that the application base can be easily expanded using the development software provided by the manufacturer. The carbohydrates were released by enzymatic digestion (PNGase F) from glycoproteins present in human plasma after boronic acid - lectin affinity enrichment. After fluorescent labeling with 8-aminopyrene-1,3,6-trisulfonic acid the carbohydrates were separated based on capillary gel electrophoresis mechanism and detected by a fluorescence detector using a blue (470 nm) LED. The separation was completed in 40 s in a microfluidic channel of 14 mm length. Glucose ladder carbohydrate oligomers differing by one glucose unit were baseline separated up to a 20-mer with the main limitation being the detection sensitivity. As expected, the observed resolution in these experiments did not approach that of standard CE with 20 times longer separation distance; however, the chip-based analysis excelled in the speed of the separation. Similar electrophoretic profiles of glycans released from plasma glycoproteins were obtained using a standard CE equipment with 35 cm separation length and microfluidic chips with a separation distance of only 14 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号